Refine search
Results 1981-1990 of 3,207
Modeling the transfer of arsenic from soil to carrot (Daucus carota L.)—a greenhouse and field-based study Full text
2015
Ding, Changfeng | Zhou, Fen | Li, Xiaogang | Zhang, Taolin | Wang, Xingxiang
Reliable empirical models describing arsenic (As) transfer in soil-plant systems are needed to estimate the human As burden from dietary intake. A greenhouse experiment was conducted in parallel with a field trial located at three sites through China to develop and validate soil-plant transfer models to predict As concentrations in carrot (Daucus carota L.). Stepwise multiple linear regression relationships were based on soil properties and the pseudo total (aqua regia) or available (0.5 M NaHCO₃) soil As fractions. Carrot As contents were best predicted by the pseudo total soil As concentrations in combination with soil pH and Fe oxide, with the percentage of variation explained being up to 70 %. The constructed prediction model was further validated and improved to avoid overprotection using data from the field trial. The final obtained model is of great practical relevance to the prediction of As uptake under field conditions.
Show more [+] Less [-]Effects of sampling methods on the quantity and quality of dissolved organic matter in sediment pore waters as revealed by absorption and fluorescence spectroscopy Full text
2015
Chen, Meilian | Lee, Jong Hyeon | Hur, Jin
Despite literature evidence suggesting the importance of sampling methods on the properties of sediment pore waters, their effects on the dissolved organic matter (PW-DOM) have been unexplored to date. Here, we compared the effects of two commonly used sampling methods (i.e., centrifuge and Rhizon sampler) on the characteristics of PW-DOM for the first time. The bulk dissolved organic carbon (DOC), ultraviolet-visible (UV-Vis) absorption, and excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC) of the PW-DOM samples were compared for the two sampling methods with the sediments from minimal to severely contaminated sites. The centrifuged samples were found to have higher average values of DOC, UV absorption, and protein-like EEM-PARAFAC components. The samples collected with the Rhizon sampler, however, exhibited generally more humified characteristics than the centrifuged ones, implying a preferential collection of PW-DOM with respect to the sampling methods. Furthermore, the differences between the two sampling methods seem more pronounced in relatively more polluted sites. Our observations were possibly explained by either the filtration effect resulting from the smaller pore size of the Rhizon sampler or the desorption of DOM molecules loosely bound to minerals during centrifugation, or both. Our study suggests that consistent use of one sampling method is crucial for PW-DOM studies and also that caution should be taken in the comparison of data collected with different sampling methods.
Show more [+] Less [-]Potential impacts of climate change on water quality in a shallow reservoir in China Full text
2015
Zhang, Chen | Lai, Shiyu | Gao, Xueping | Xu, Liping
To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992–2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992–2001 and 2002–2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.
Show more [+] Less [-]Biomarkers of oxidative stress in rat for assessing toxicological effects of heavy metal pollution in river water Full text
2015
Reddy, Utkarsh A. | Prabhakar, P. V. | Rao, G Sankara | Rao, Pasham Rajasekhar | Sandeep, K. | Rahman, M. F. | Kumari, S Indu | Grover, Paramjit | Khan, Haseeb A. | Mahboob, M.
Increasing use of heavy metals in various fields, their environmental persistency, and poor regulatory efforts have significantly increased their fraction in river water. We studied the effect of Musi river water pollution on oxidative stress biomarkers and histopathology in rat after 28 days repeated oral treatment. River water analysis showed the presence of Zn and Pb at mg/l concentration and Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Sn, and Sb at μg/l concentration. River water treatment resulted in a dose-dependent accumulation of metals in rat organs, being more in liver followed by kidney and brain. Metal content in both control and low-dose group rat organs was below limit of detection. However, metal bioaccumulation in high- and medium-dose group organs as follows: liver—Zn (21.4 & 14.5 μg/g), Cu (8.3 & 3.6 μg/g), and Pb (8.2 & 0.4 μg/g); kidney—Zn (16.2 & 7.9 μg/g), Cu (3.5 & 1.4 μg/g), Mn (2.9 & 0.5 μg/g), and Pb (2.6 & 0.5 μg/g); and brain—Zn (2.4 & 1.1 μg/g), and Ni (1 & 0.3 μg/g). These metals were present at high concentrations in respective organs than other metals. The increased heavy metal concentration in treated rat resulted significant increase in superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione S transferase enzymes activity, and lipid peroxidation in a dose-dependent manner. However, glutathione content and catalase activity were significantly decreased in treated rat organs. Histopathological examination also confirmed morphological changes in rat organs due to polluted river water treatment. In conclusion, the findings of this study clearly indicate the oxidative stress condition in rat organs due to repeated oral treatment of polluted Musi river water.
Show more [+] Less [-]Spatial and seasonal variations of atmospheric particulate carbon fractions and identification of secondary sources at urban sites in North India Full text
2015
Behera, Sailesh N. | Sharma, Mukesh
An intensive measurement campaign was undertaken to characterize eight fractions of organic carbon (OC) and elemental carbon (EC) in particulate matter (PM) at four urban sites with different pollution characteristics during summer, post-monsoon, and winter at Kanpur, India. Speciation samplers were used to collect particulate samples on quartz filters followed by analysis of OC and EC using Interagency Monitoring of Protected Visual Environments (IMPROVE)-based thermal/optical reflectance (TOR) method. Based on 24-h average results at each site, the highest levels of OC and EC were observed during winter as 96.7 ± 26.9 and 31.8 ± 9.8 μg/m³ at residential site and traffic site, respectively. The levels of OC at residential sites during winter appeared to be more than twice of that during summer. The site close to the road traffic had the least value of OC/EC, as 1.77 ± 0.28 during post-monsoon, and the site influenced by emissions of domestic cooking and heating had the highest value of OC/EC, as 4.05 ± 0.79 during winter. The average abundances of OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3 in total carbon (TC) at all sites for three seasons were 10.03, 19.04, 20.03, 12.32, 10.53, 33.39, 3.21, and 1.99 %, respectively. A sharp increase in levels of OC1 and EC1-OP during winter at two residential sites revealed that biomass burning could be a significant contributor to carbonaceous aerosols. From the application of EC-tracer method, it was observed that contribution of secondary organic carbon (SOC) to PM mass increased from 5 % during post-monsoon to 16 % during winter at residential sites and from 2 % during post-monsoon to 7 % during winter at traffic sites. Therefore, it could be inferred that increase in primary emissions coupled with unfavorable meteorological conditions could cause particle agglomeration and hygroscopic growth, leading to unpleasant pollution episode during winter.
Show more [+] Less [-]Quantitatively evaluating detoxification of the hepatotoxic microcystin-LR through the glutathione (GSH) pathway in SD rats [Erratum: March 2016, v.23(6), p.5995] Full text
2015
Guo, Xiaochun | Ma, Yukun | Chen, Jun | Xie, Ping | Li, Shangchun | He, Jun | Li, Wei | Fan, Huihui | Yu, Dezhao | Zeng, Cheng
Glutathione (GSH) plays crucial roles in antioxidant defense and detoxification metabolism of microcystin-LR (MC-LR). However, the detoxification process of MC-LR in mammals remains largely unknown. This paper, for the first time, quantitatively analyzes MC-LR and its GSH pathway metabolites (MC-LR-GSH and MC-LR-Cys) in the liver of Sprague–Dawley (SD) rat after MC-LR exposure. Rats received intraperitoneal (i.p.) injection of 0.25 and 0.5 lethal dose 50 (LD₅₀) of MC-LR with or without pretreatment of buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The contents of MC-LR-GSH were relatively low during the experiment; however, the ratio of MC-LR-Cys to MC-LR reached as high as 6.65 in 0.5 LD₅₀ group. These results demonstrated that MC-LR-GSH could be converted to MC-LR-Cys efficiently, and this metabolic rule was in agreement with the data of aquatic animals previously reported. MC-LR contents were much higher in BSO + MC-LR-treated groups than in the single MC-LR-treated groups. Moreover, the ratio of MC-LR-Cys to MC-LR decreased significantly after BSO pretreatment, suggesting that the depletion of GSH induced by BSO reduced the detoxification of MCs. Moreover, MC-LR remarkably induced liver damage, and the effects were more pronounced in BSO pretreatment groups. In conclusion, this study verifies the role of GSH in the detoxification of MC-LR and furthers our understanding of the biochemical mechanism for SD rats to counteract toxic cyanobacteria.
Show more [+] Less [-]The spatial distribution of dissolved and particulate heavy metals and their response to land-based inputs and tides in a semi-enclosed industrial embayment: Jiaozhou Bay, China Full text
2015
Wang, Changyou | Liang, Shengkang | Li, Yanbin | Li, Keqiang | Wang, Xiulin
In order to evaluate heavy metal contamination in surface waters in the Jiaozhou Bay (JZB), a typical semi-enclosed bay in the north of China, and to identify the response of heavy metal distribution to terrigenous sources and tides, the land-based discharge flux of dissolved Cu, Pb, Zn and Cd and their particulates, as well as their concentrations, were synchronously surveyed in JZB in flood season and normal season respectively. The survey results showed that the amount of dissolved Cu clearly increased from the estuaries to the offshore waters during the flood season, especially from the Dagu estuary to the mouth of JZB. The same trend was observed for Pb. The isopleths of dissolved Zn during the flood season presented a different pattern in which a clear decrease was observed from the Lianwan, Moshui and Dagu estuaries to the offshore waters. However, the particulate Cu isopleths during the flood season, which had the same pattern as those of particulate Pb, Zn and Cd, showed a clear decrease from the Dagu estuary to the mouth of JZB. The isopleths for dissolved and particulate Cu during the normal season showed a clear decrease from the northeast to the entrance of JZB, and the same trend was observed for Pb, Zn and Cd. Observations based on synchronous investigations of the fluvial fluxes of the selected metals and their average concentrations in JZB showed that these patterns were controlled by the strong external fluvial inputs, especially from the Dagu River. The diurnal change in the Cu, Pb, Zn and Cd concentrations showed a periodicity with a cycle length of approximately 12 h in JZB, which indicates the noticeable impact of the semi-diurnal tide. The weighed average concentration from freshwater inputs calculated for dissolved Cu, Pb, Zn and Cd were higher than their average concentrations in JZB. This indicated that JZB had been contaminated with these metals, whose concentrations were also higher than those found in uncontaminated waters.
Show more [+] Less [-]Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks Full text
2015
Rüdel, Heinz | Díaz Muñiz, Cristina | Garelick, Hemda | Kandile, Nadia G. | Miller, Bradley W. | Pantoja Munoz, Leonardo | Peijnenburg, Willie J. G. M. | Purchase, Diane | Shevah, Yehuda | van Sprang, Patrick | Vijver, Martina | Vink, Jos P. M.
After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given.
Show more [+] Less [-]Concentrations of trace elements in the kidney, liver, muscle, and skin of short sea snake (Lapemis curtus) from the Strait of Hormuz Persian Gulf Full text
2015
Heydari Sereshk, Zahra | Riyahi Bakhtiari, Alireza
To our knowledge, this is the first report into trace elements accumulation in tissues of the short sea snake (Lapemis curtus). Lead (Pb), cadmium (Cd), copper (Cu), vanadium (V), nickel (Ni), and zinc (Zn) were determined in the kidney, liver, skin, and muscle tissues of short sea snake, L. curtus, from the Strait of Hormuz during October 2011. Skins generally displayed the lowest trace element burdens. Kidneys displayed the highest Pb, Cd, V, Ni, and Cu mean concentrations (0.89, 0.04, 1.66, 6.22, and 20.23 μg g⁻¹ dry weight, respectively), while muscle exhibited the highest Zn levels (493.32 μg g⁻¹ dry weight). Concentration ranges of the selected trace elements were compared with those reported in other studies. Data presented here may be considered as a baseline for further ecotoxicological studies in sea snakes.
Show more [+] Less [-]Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone Full text
2015
Feng, Huan | Zhang, Weiguo | Liu, Wenliang | Yu, Lizhong | Qian, Yu | Wang, Jun | Wang, Jia-Jun | Eng, Christopher | Liu, Chang-Jun | Jones, Keith W. | Tappero, Ryan
This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g., Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. This micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.
Show more [+] Less [-]