Refine search
Results 21-30 of 762
Phytoremediation of contaminated soils and groundwater: lessons from the field
2009
Vangronsveld, Jaco | Herzig, Rolf | Nele Weyens, Nele Weyens | Boulet, Jana | Adriaensen, Kristin | Ruttens, Ana | Thewys, Theo | Vassilev, Andon | Meers, Erik | Nehnevajova, Erika | van Der Lelie, Daniel | Mench, Michel | Centre for Environmental Sciences ; Hasselt University (UHasselt) | Phytotech-Foundation ; Partenaires INRAE | AGB-Arbeitsgemeinschaft für Bioindikation ; Partenaires INRAE | Agricultural University [Plovdiv] | Universiteit Gent = Ghent University (UGENT) | Brookhaven National Laboratory [Upton, NY] (BNL) ; UT-Battelle, LLC-Stony Brook University [SUNY] (SBU) ; State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE) | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)
COST ACTION 859 | International audience | Background, aim, and scope: The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. Conclusions and perspectives: It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).
Show more [+] Less [-]Impact of input data on biogenic volatile organic compounds emission inventory. Application to the natural park of Bertiz – North of Spain
2009
Simon, Valérie | Santamaria, J.M. | Chimie Agro-Industrielle (CAI) ; Institut National de la Recherche Agronomique (INRA)-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques (ENSIACET) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Universidad de Navarra [Pamplona] (UNAV) | Mediterranean Scientific Association of Environmental Protection (MESAEP). DEU.
International audience
Show more [+] Less [-]Mosses as bioindicators of temporal variations of air quality inside Bertiz Natural Park, Navarra, Northern Spain
2009
Sablayrolles, Caroline, | Simon, Valérie | Foan, Louise | Santamaria, Jesus Miguel
Impact of input data on biogenic volatile organic compounds emission inventory. Application to the natural park of Bertiz – North of Spain
2009
Simon, Valérie | Santamaria, J.M.
Mechanistic effect models for ecological risk assessment of chemicals (MEMoRisk)-a new SETAC-Europe Advisory Group
2009
Preuss, Thomas | Hommen, Udo | Alix, Anne | Ashauer, Roman | van den Brink, Paul | Chapman, Peter | Ducrot, Virginie | Forbes, Valery | Grimm, Volker | Schäfer, Dieter | Streissl, Franz | Thorbeck, Pernille | Institute for Environmental Research ; Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH) | Fraunhofer (Fraunhofer-Gesellschaft) | Direction du Végétal et de l'Environnement ; Agence Française de Sécurité Sanitaire des Aliments | Swiss Federal Institute for Environmental Science and Technology | Alterra ; Wageningen University and Research [Wageningen] (WUR) | Unilever-Safety & Environmental Assurance Centre ; Unilever | Écologie et santé des écosystèmes (ESE) ; Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST | Center for Integrated Population Ecology ; Roskilde University | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Environmental Safety ; Bayer Cropscience | Pesticide Risk Assessment Peer Review ; European Food Safety Authority = Autorité européenne de sécurité des aliments | Environmental Safety, Jealott's Hill ; Syngenta
Mechanistic effect models for ecological risk assessment of chemicals (MEMoRisk)-a new SETAC-Europe Advisory Group
Show more [+] Less [-]How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops
2009
Colbach, Nathalie | Biologie et Gestion des Adventices (BGA) ; Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)
International audience | Background, aim and scope Agricultural landscapes comprise cultivated fields and semi-natural areas. Biological components of these compartments such as weeds, insect pests and pathogenic fungi can disperse sometimes over very large distances, colonise new habitats via insect flight, spores, pollen or seeds and are responsible for losses in crop yield (e.g. weeds, pathogens) and biodiversity (e.g. invasive weeds). The spatiotemporal dynamics of these biological components interact with crop locations, successions and management as well as the location and management of semi-natural areas such as roadverges. The objective of this investigation was to establish a modelling and simulation methodology for describing, analysing and predicting spatiotemporal dynamics and genetics of biological components of agricultural landscapes. The ultimate aim of the models was to evaluate and propose innovative cropping systems adapted to particular agricultural concerns. The method was applied to oilseed rape (OSR) volunteers playing a key role for the coexistence of genetically modified (GM) and non-GM oilseed rape crops, where the adventitious presence of GM seeds in non-GM harvests (AGMP) could result in financial losses for farmers and cooperatives. Material and methods A multi-year, spatially explicit model was built, using field patterns, climate, cropping systems and OSR varieties as input variables, focusing on processes and cultivation techniques crucial for plant densities and pollen flow. The sensitivity of the model to input variables was analysed to identify the major cropping factors. These should be modified first when searching for solutions limiting gene flow. The sensitivity to model processes and species life-traits were analysed to facilitate the future adaptation of the model to other species. The model was evaluated by comparing its simulations to independent field observations to determine its domain of validity and prediction error. Results The cropping system study determined contrasted farm types, simulated the current situation and tested a large range of modifications compatible with each farm to identify solutions for reducing the AGMP. The landscape study simulated gene flow in a large number of actual and virtual field patterns, four combinations of regional OSR and GM proportions and three contrasted cropping systems. The analysis of the AGMP rate at the landscape level determined a maximum acceptable GM OSR area for the different cropping systems, depending on the regional OSR volunteer infestation. The analysis at the field level determined minimum distances between GM and non-GM crops, again for different cropping systems and volunteer infestations. Discussion The main challenge in building spatially explicit models of the effects of cropping systems and landscape patterns on species dynamics and gene flow is to determine the spatial extent, the time scale, the major processes and the degree of mechanistic description to include in the model, depending on the species characteristics and the model objective. Conclusions These models can be used to study the effects of cropping systems and landscape patterns over a large range of situations. The interactions between the two aspects make it impossible to extrapolate conclusions from individual studies to other cases. The advantage of the present method was to produce conclusions for several contrasted farm types and to establish recommendations valid for a large range of situations by testing numerous landscapes with contrasted cropping systems. Depending on the level of investigation (region or field), these recommendations concern different decision-makers, either farmers and technical advisors or cooperatives and public decision-makers. Recommendations and perspectives The present simulation study showed that gene flow between coexisting GM and non-GM varieties is inevitable. The management of OSR volunteers is crucial for containing gene flow, and the cropping system study identified solutions for reducing these volunteers and ferals in and outside fields. Only if these are controlled can additional measures such as isolation distances between GM and non-GM crops or limiting the proportion of the region grown with GM OSR be efficient. In addition, particular OSR varieties contribute to limit gene flow. The technical, organisational and financial feasibility of the proposed measures remains to be evaluated by a multi-disciplinary team.
Show more [+] Less [-]Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils
2009
Giannis, Apostolos | Nikolaou, Aris | Pentari, Despina | Gidarakos, Evangelos
An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte–catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65–95%, for Cu 15–60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.
Show more [+] Less [-]Investigations into a novel method for atmospheric polycyclic aromatic hydrocarbon monitoring
2009
Forbes, Patricia B.C. | Rohwer, Egmont R.
A novel analytical method for atmospheric polycyclic aromatic hydrocarbons (PAHs) was developed based on laser induced fluorescence (LIF) of samples on quartz multi-channel polydimethylsiloxane traps. A tunable dye laser with a frequency doubling crystal provided the excitation radiation, and a double monochromator with a photomultiplier tube detected emitted fluorescence. The method allowed for the rapid (<5 min), cost effective analysis of samples. Those yielding interesting results could be further analysed by direct thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS, with limits of detection of 0.3 ng m⁻³), as photodegradation was minimal (<10% over 5 min irradiation). Small amounts of naphthalene photodegradation products identified by TD-GC-MS after >15 min irradiation, included phenol, benzyl alcohol and phthalic anhydride. Without any signal optimization, a LIF detection limit of 1 μg m⁻³ was established for naphthalene using a diffusion tube (diffusion rate of 2 ng s⁻¹) and 292 nm excitation. A novel method for rapid analysis of atmospheric PAHs by laser induced fluorescence allows for more detailed trend determinations.
Show more [+] Less [-]SPEAR indicates pesticide effects in streams - Comparative use of species- and family-level biomonitoring data
2009
Beketov, M.A. | Foit, K. | Schäfer, R.B. | Schriever, C.A. | Sacchi, A. | Capri, E. | Biggs, J. | Wells, C. | Liess, M.
To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEARpesticides) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEARpesticides with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm)pesticides is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm)pesticides is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEARpesticides according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies. We show that SPEARpesticides can be based on family-level biomonitoring data and is applicable for large-scale monitoring programmes to detect and quantify pesticide contamination.
Show more [+] Less [-]Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety
2009
Liu, Weitao | Zhou, Qixing | Sun, Yuebing | Liu, Rui
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg⁻¹ Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg⁻¹, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg⁻¹. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg⁻¹) for food safety. Lvxing 70 was identified as a Cd-excluder genotype (CEG) and suitable to be cultivated in low Cd-contaminated soils for food safety.
Show more [+] Less [-]