Refine search
Results 21-30 of 607
Assessment of the Pollution of some Heavy Metals in the Sediments of the Tigris River in the City of Mosul- Northern Iraq Full text
2023
Mahmmod, Rana | Najam, Laith | Wais, Taha | Mansour, Howaida
In this study, the concentrations of heavy metals were studied using atomic absorption spectroscopy of samples from the sediments of the Tigris River within the boundaries of the city of Mosul, northern Iraq, and the environmental parameters of heavy metals were calculated. The results showed that the average concentrations of Co, Cu, Cd, Pb, Zn, and Ni in (ppm) were (8.78, 30.42, 0.179, 12.04, 75.53, and 144.75), respectively, where these results were higher than the international accepted average. It indicates that the main factor in the high concentrations of heavy metals in the environment of the Tigris River in the city of Mosul is the pollution caused by human activities. The results of the environmental treatments for the studied heavy metals showed that the values of the enrichment factor (EF) were moderately contaminated with Cu, Cd, Ni, and Zn and not contaminated with Co and Pb. The value of the contamination factor (CF) for the sediments of the Tigris River in the studied areas showed that the sediments of those areas are moderately polluted with Co, Ni, and Zn metals. The degree of contamination (Cdeg) for the sediments of the study area in general ranges from low - medium pollution, the pollution load index (PLI) average of (1.03) showed that the sediments of the study area were contaminated with heavy metals. Therefore, we conclude that the environment of the Tigris River is polluted with heavy metals, but it is not at the level that causes concern at present.
Show more [+] Less [-]National Survey of Stream Water Quality Revealing Threats to Antibio-Resistant Bacteria, Antibiotic Residues and Heavy Metals in Benin Full text
2023
Gbotche, Elodie | Houssou Quenum, Marie Camille | Dougnon, Tamegnon Victorien | Ogunlaja, Aemere | Klotoe, Jean-Robert | Fabiyi, Kafayath | Agbankpe, Alidehou Jerrold | Hounsa, Edna | Vodounnon, Kevine | Mousse, Wassiyath | Ahouandjinou, Sophonia | Hinnilo, Curiace | Togbe, Eskyl | Kelome, Nelly | Agbangla, Clement | Bankole, Honore Sourou | Baba-Moussa, Lamine | Unuabonah, Iyayi
Benin’s waterways are affected by several forms of pollution that are linked in particular to anthropic activities. This study aims to detect the presence of antibiotic residues, the frequency of antibiotic resistant bacteria and the levels of heavy metals in Benin’s waterways. 160 surface water samples from streams in Benin were collected. They were filtered by the membrane filtration method, then incubated on different media. The isolated bacterial species were identified by API 20E gallery and specific biochemical tests. After detection of the resistance profile of the latter, the antibiotic residues were quantified in the samples by the ELISA technique on plate and the physicochemical analyses were performed by Multi 3630 IDS SET KS2 multimeter. Finally, heavy metal levels were detected by the MERCK test kit method specific to each metal. The bacterial species mostly identified were Klebsiella pneumoniae (56.59%), Klebsiella spp. (18.68%), Enterobacter spp. (12.63%). The most abundant resistance of bacterial strains was to amoxicillin + clavulanic acid (92%), followed by metronidazole (86%). Metronidazole was the antibiotic with the highest residue concentration in the samples (6.578 to 6.829 µg/L), followed by ciprofloxacin (2.142 to 9.299 µg/L). Benin streams contain heavy metals such as mercury (0.454±0.129 µg/L), lead (0.040±0.50 mg/L), zinc (6.120±16.017 mg/L), nickel (0.155±0.233 mg/L) and cadmium (0.154±0.132 mg/L). The analysis of the physico-chemical parameters showed that, apart from electrical conductivity, all parameters comply with Beninese and World Health Organization standards. Actions must be taken to clean up these rivers to preserve the integrity of aquatic ecosystems in Benin.
Show more [+] Less [-]Carcinogenic and Health Risk Assessment of Respiratory Exposure to BTEX Compounds in Gasoline Refueling Stations in Karaj – Iran Full text
2023
Alimohammadi, Mehdi | Behbahaninia, Azita | Farahani, Maryam | Motahari, Saeed
BTEX is one of the common compounds in the breathing air of gas station workers, which can cause high carcinogenic and health risks. The present study was conducted to assess the carcinogenic and health risks of occupational exposure to BTEX compounds in gasoline fuel distribution stations in Karaj. This descriptive and cross-sectional study was conducted to assess the carcinogenic and health risks caused by exposure to BTEX compounds in 2021 during the summer and winter in six fuel distribution stations in Karaj. Occupational exposure to BTEX was measured according to the NIOSH 1501 method. Cancer and non-cancer risk assessment were performed according to the United States Environmental Protection Agency (USEPA) method. Data were analyzed in SPSS software version 26. The average occupational exposure to benzene, toluene, ethyl benzene, and xylene during a work shift among all participants in summer and winter were 83.33 - 89.33, 202 - 210.66, 126.55 - 136.83, and 168.81 - 174.83 µg.m-3, respectively. The highest concentration of BTEX compounds was observed in Gas station in the center of the city. The mean carcinogenic risk value of benzene and ethylbenzene were 139×10-2 and 27×10-2, respectively. The highest carcinogenic risk value due to exposure to benzene and ethyl benzene was observed in Gas station in the center of the city. The mean non-carcinogenic and health risks of occupational exposure to benzene, toluene, ethyl benzene, and xylene were 173.79, 14.19, 3.61, and 12.87, respectively. The findings demonstrated the values of carcinogenic and non-carcinogenic risk in the majority of participants were within the definitive and unacceptable risk levels. Therefore, corrective measures are necessary to protect the employees from the non-cancer and cancer risks.
Show more [+] Less [-]Experimental Evaluation of Regression Prediction Analysis After Testing Engine Performance Characteristics Full text
2023
Farhadi, Ali | Yousefi, Hossein | Noorollahi, Younes | Hajinezhad, Ahmad
Using ethanol in gasoline is considered one of the most significant goals in the 2030 agenda, which has been set a 15-year plan in order to achieve it since 2015. Appropriately, this project was planned for predicting the value of the most important engine parameters such as the equivalence air-fuel ratio (φ), fuel consumption (ṁf), and brake thermal efficiency nb. th, and brake-specific fuel consumption (BSFC) by regression models. According to the protocol of this project, first, the determined percentages of ethanol were added (0, 20, 40, 60, and 80%) to gasoline at different engine speeds (850, 1000, 2000, 3000, and 4000 rpm and the New European Driving Cycle test). After testing, calculating, mathematical programming, and fitting the regression models for the two SI-engine (TU5 and EF7) with different properties of engine design,12 regression equations have been determined for each of the ‘ (positive linear model), (ṁf) (negative linear model), nb.th (negative second-order polynomial model), and BSFC (positive second-order polynomial model), respectively. Clearly, these 48 regression equations with different line slopes will be able to predict the exact value of the ‘, (ṁf), nb.th, and BSFC for each concentration of ethanol at different engine speeds in order to help automotive industries for trend predicting them in other similar engines.
Show more [+] Less [-]Diversity and Degradative Potency of Extant Autochthonous Crude Oil-Metabolizing Species in a Chronically Polluted River Full text
2023
Osadebe, Anwuli | Ogugbue, Chimezie | Okpokwasili, Gideon
Persistent pollution of surface waters by hydrocarbon compounds is one of the foremost threats to limited global freshwater resources. This study analyzed the abundance, diversity and degradative capacities of hydrocarbon-utilizing bacteria in chronically polluted Kono River in the Nigerian Niger Delta in order to establish the bacterial drivers of ecological regeneration of the river after an oil spill. The study further aimed to develop a specialized bacterial consortium for application in bioremediation interventions. Bacillus, Pseudomonas and Enterobacter spp. were predominant out of the 82 isolates obtained. Klebsiella pneumoniae and two species of Enterobacter cloacae were identified as the most efficient hydrocarbon utilizers. The isolates were also confirmed as biosurfactant producers and possessed the alkB1 and nahAc genes for degradation of aliphatics and aromatics. E. cloacae-K11, K. pneumoniae-K05, E. cloacae-K12 and their consortium were able to degrade the total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in batch systems by 59.37% – 96.06% and 68.40% – 92.46% respectively. K. pneumoniae-K05 showed the greatest petroleum degradation capacity of the three isolates but hydrocarbon degradation was most efficient with the bacterial consortium. The results obtained showed no significant differences at p≤0.05 between the degradation capacities of K. pneumoniae-K05 and the consortium for PAHs but a significant difference (p≤0.05) was seen with TPH degradation. A viable hydrocarbon degrading bacterial consortium was developed at the end of the study and it was concluded that the polluted river water displayed inherent potential for effective natural attenuation.
Show more [+] Less [-]Investigating the Influence of Urban River Valleys on Meteorological Parameters at the Local Scale as a Factor for urban sustainability - Case study: Farahzad River Valley Full text
2023
Allahyari, Hadis | Salehi, Esmael | Zebardast, Lobat | Jafari, Hamidreza
Four regions of the Farahzad River Valley with different topography were selected to fully survey it and study the effects of morphology on local climate. then one of the hot days of the month of June 2021 (June 6th) was selected because the wind speeds increase in spring. According to the comparison of the simulation results with the existing site plans, the temperature in area 3 was the highest, 39.60 degrees, and the wind speed was 3.57 m/s. On the other hand, the study and analysis of the maps showed that the temperature of the roads in regions 3 and 4 were higher than the other two regions with a temperature range of 37.69-38.40, so the presence of impervious asphalt surfaces on the roads is very effective in increasing the air temperature in these areas. Comparisons also showed that tall buildings and vegetation create shaded areas and increase wind speed. Based on this, two scenarios were designed. In the first scenario, doubling the height of buildings increased wind speed in Region 3 by 3.42 m/s and decreased temperatures by 1.59 degrees. In the second scenario, when tall trees were planted at certain distances around the streets, the temperature in Region 3 decreased by 1.68 degrees and the wind speed increased by 1.68 m/s. The results show that the differences in the topography of urban valleys cause ventilation of the environment and that the effect of this feature in other environments is more effective through planting than through buildings.
Show more [+] Less [-]Response Surface Methodology for Adsorption of Humic Acid by Polyetheretherketone/ Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles from Industrial Wastewater Full text
2023
Pournamdari, Elham
The applicability of Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles synthesized for eliminating humic acid rapidly from industrial wastewater. Identical techniques, including BET, FTIR, XRD, and SEM have been utilized to characterize this novel material. Also, the impacts of variables including initial humic acids (HAs) concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM). The values of 10 mgL-1, 6.0, 0.025 g, and 5.0 min were investigated through batch experiments, considered as the ideal values for humic acids (HAs) concentration, pH, adsorbent dosage, and contact time, respectively. Adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model and pseudo-second-order kinetics (R2: 0.999) with maximum adsorption capacity (102.0 mgg-1), respectively. The overall results confirmed that Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles could be a promising adsorbent material for humic acids (HAs) removal from industrial wastewater.
Show more [+] Less [-]Removal of Cd(II) Ions from Aqueous Solutions using adsorption By Bentonite Clay and Study the Adsorption Thermodynamics Full text
2023
Hamood, Ahmed | Mohammed, Inas | Majeed, Ahmed
cadmium usually enter the environment and water resources through wastewater, released by various industries, and may have adverse effects. The current study employs surface of bentonite clay available locally in order to remove cadmium In solutions contaminated with this type of ions, in order to research on a surface with a high ability to adsorption of cadmium (II) ions, study Some factors affect the adsorption process on bentonite clay, such as contact time, pH the solution, Adsorbent particle size, Initial concentration of solutions and temperature of the solution were examined in the a batch process mode. The amount of adsorbed Cd (II) increased with height temperature, the optimum adsorption pH was about 6.5. Under this condition, the percent removal was 95.17%. The adsorption isotherms were studied and the results of adsorption processes were more fitted with Friendlich model rather than Langmuir adsorption model. Thermodynamic study showed that, ΔH was endothermic, ΔG is found to be negative That is, the process is automatic and ΔS was found to be positive. The current study also involves practical application using bentonite to get rid of Cd(II) ions to from wastewater of Hamdan's station of the Basra- iraq, The results indicate high affinity (97.84%) removal of Cd(II) ions.
Show more [+] Less [-]Recovery of the fixing solution waste and silver, as well as the direct synthesis of silver nanoparticles from the solution waste Full text
2023
Azordeh, Soheila | Asadi, Mehdi
Radiology and photography films are mainly made of silver halides, which are very sensitive to light. The developer-fixing solution reduces silver salt crystals and turns them into black metallic silver on film and a stable and clear image appears on the film. After several uses of the fixing solution, its efficiency is reduced due to the decrease in the concentration of sodium thiosulfate and finally, it cannot be used since there is not enough awareness regarding its harm, so it enters the environment through wastewater. In this study, the recovery of fixing solution waste has been investigated. The recovery of the solution waste, silver extraction, and direct synthesis of nanoparticles have been performed by chemical reduction method from the waste. The obtained samples were analyzed and studied by EDX, XRD, and SEM techniques. The results showed that the fixing solution waste and silver metal were recovered properly with a purity of 99.81%. Also, AgNPs were synthesized by chemical reduction. Recovery of the fixing solution waste -for the first time- and metallic silver, as well as the synthesis of AgNPs by chemical reduction method, is an economical method and free of any contamination.
Show more [+] Less [-]Assessing the Natural and Anthropogenic Radionuclide Activities in Fish from Arctic Rivers (Northwestern Russia) Full text
2023
Puchkov, Andrey | Druzhinina, Anna | Yakovlev, Evgeny | Druzhinin, Sergey
This scientific article presents the results of studies on the distribution of natural and artificial radionuclides in fish living in the rivers of the northwestern sector of the Arctic zone of the Russian Federation. Fish sampling (about 76 kg in total) was carried out in the White Sea, in the Northern Dvina and Mezen Rivers, and in the Sukhoe Sea Bay of the Arkhangelsk Region, as well as in the rivers of the Nenets Autonomous District: Pesha, Oma, Vizhas, Nes, and Pechora. The results showed the presence of artificial radionuclides Cs-137 and Sr-90 in fish only in the Nes River of the Nenets Autonomous District. The levels of radionuclides in whole bodies perch and pike in the Nes River range from 3.73 to 14.0 Bq/kg wet weight for Cs-137 and less than 3.72 to 23.1 Bq/kg wet weight for Sr-90. In addition to Cs-137 and Sr-90, the presence of the radionuclide K-40, which is the main dose-forming radionuclide, was noted in the fish of all the studied rivers and seas. K-40 activity was in the reached values 138 Bq/kg for whole fish bodies. The only assumption that can explain the presence of artificial radionuclides in the fish of the Nes River is a possible radioactive trace formed as a result of global nuclear tests, including in the Novaya Zemlya archipelago. At the same time, it is noted that the current levels of technogenic radioactivity in fish from the Nes River do not pose a radiological hazard to the local population.
Show more [+] Less [-]