Refine search
Results 201-210 of 2,459
Detection of free and covalently bound microcystins in different tissues (liver, intestines, gills, and muscles) of rainbow trout (Oncorhynchus mykiss) by liquid chromatography–tandem mass spectrometry: Method characterization
2014
Cadel-Six, Sabrina | Moyenga, David | Magny, Stéphanie | Trotereau, Sophie | Edery, Marc | Krys, Sophie
So far only a few publications have explored the development of extraction methods of cyanotoxin extracted from complex matrices. With regard to cyanobacterial microcystins (MCs), the data on the contamination of the flesh of aquatic organisms is hard to compare and very limited due to the lack of validated methods. In recent years, evidence that both free and bound fractions of toxin are found in these tissues has highlighted the need to develop effective methods of quantification. Several techniques do exist, but only the Lemieux oxidation has so far been used to investigate complex tissue matrices. In this study, protocols based on the Lemieux approach were adapted for the quantitative chemical analysis of free MC-LR and MMPB derived from bound toxin in the tissues of juvenile trout gavaged with MC-LR. Afterwards, the NF V03 110 guideline was used to characterize the protocols elaborated and evaluate their effectiveness.
Show more [+] Less [-]A new analytical approach for monitoring microplastics in marine sediments
2014
Nuelle, Marie-Theres | Dekiff, Jens H. | Rémy, Dominique | Fries, Elke
A two-step method was developed to extract microplastics from sediments. First, 1 kg sediments was pre-extracted using the air-induced overflow (AIO) method, based on fluidisation in a sodium chloride (NaCl) solution. The original sediment mass was reduced by up to 80%. As a consequence, it was possible to reduce the volume of sodium iodide (NaI) solution used for the subsequent flotation step. Recoveries of the whole procedure for polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polystyrene and polyurethane with sizes of approximately 1 mm were between 91 and 99%. After being stored for one week in a 35% H2O2 solution, 92% of selected biogenic material had dissolved completely or had lost its colour, whereas the tested polymers were resistant. Microplastics were extracted from three sediment samples collected from the North Sea island Norderney. Using pyrolysis gas chromatography/mass spectrometry, these microplastics were identified as PP, PVC and PET.
Show more [+] Less [-]Urinary excretion of arsenic following rice consumption
2014
Meharg, A.A. | Williams, P.N. | Deacon, C.M. | Norton, G.J. | Hossain, M. | Louhing, D. | Marwa, E. | Lawgalwi, Y. | Taggart, M. | Cascio, C. | Haris, P.
Patterns of arsenic excretion were followed in a cohort (n = 6) eating a defined rice diet, 300 g per day d.wt. where arsenic speciation was characterized in cooked rice, following a period of abstinence from rice, and other high arsenic containing foods. A control group who did not consume rice were also monitored. The rice consumed in the study contained inorganic arsenic and dimethylarsinic acid (DMA) at a ratio of 1:1, yet the urine speciation was dominated by DMA (90%). At steady state (rice consumption/urinary excretion) ∼40% of rice derived arsenic was excreted via urine. By monitoring of each urine pass throughout the day it was observed that there was considerable variation (up to 13-fold) for an individual's total arsenic urine content, and that there was a time dependent variation in urinary total arsenic content. This calls into question the robustness of routinely used first pass/spot check urine sampling for arsenic analysis.
Show more [+] Less [-]Plant growth responses to inorganic environmental contaminants are density-dependent: Experiments with copper sulfate, barley and lettuce
2014
Hansi, Mari | Weidenhamer, Jeffrey D. | Sinkkonen, Aki
The density-dependence of terrestrial plant–plant interactions in the presence of toxins has previously been explored using biodegradable compounds. We exposed barley and lettuce to four copper concentrations at four stand densities. We hypothesized that toxin effects would decrease and Cu uptake would increase at increasing plant densities. We analyzed toxin effects by (a) comparing plant biomasses and (b) using a recent regression model that has a separate parameter for the interaction of resource competition and toxin interference. Plant response to Cu was density-dependent in both experiments. Total Cu uptake by barley increased and the dose per plant decreased as plant density increased. This study is the first to demonstrate that plant density mediates plant response to metals in soil in a predictable way. This highlights the need to explore the mechanisms for and consequences of these effects, and to integrate the use of several plant densities into standard ecotoxicological testing.
Show more [+] Less [-]Levels, distribution and human exposure of new non-BDE brominated flame retardants in the indoor dust of China
2014
Qi, Hong | Li, Wen-Long | Liu, Li-Yan | Zhang, Zi-Feng | Zhu, Ning-Zheng | Song, Wei-Wei | Ma, Wanli | Li, Yi-Fan
Indoor environment is an important source of human exposure to several toxicants, such as brominated flame retardants. This study presents the concentrations of 22 Non-BDE brominated flame retardants (NBFRs) in 81 indoor dust samples from 23 provinces across China in the winter of 2010. The concentrations of ΣNBFRs ranged from 6.3 to 20,000 ng/g, with a median concentration of 720 ng/g. DBDPE was the dominated compound, followed by HBCD and BEHTBP. Significant differences of concentrations were found between samples from rural and urban areas, and between family and public houses, indicating different applications of NBFRs. The geographical distribution of NBFRs highlighted several hotspots in North China, suggesting the influence of room temperature (heating). The exposure via dust ingestion of NBFRs was 3.8–14 times higher than that of dermal absorption. The toddlers demonstrated the highest exposure dose (9.6 ng/kg-bw/day) of NBFRs through indoor dust among all life stages.
Show more [+] Less [-]Enriching for microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans
2014
Liu, Hui | Park, Joong-Wook | Häggblom, Max M.
Anaerobic enrichment cultures derived from contaminated Kymijoki River sediments dechlorinated 1,2,3,4-tetrachlorodibenzofuran (1,2,3,4-tetra-CDF), octachlorodibenzofuran (octa-CDF) and 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-tetra-CDD). 1,2,3,4-tetra-CDF was dechlorinated via 1,2,3-, 2,3,4-, and 1,3,4/1,2,4-tri-CDFs to 1,3-, 2,3-, and 2,4-di-CDFs and finally to 4-mono-CDF. The dechlorination rate of 1,2,3,4-tetra-CDF was generally slower than that of 1,2,3,4-tetra-CDD. The rate and extent of 1,2,3,4-tetra-CDD dechlorination was enhanced by addition of pentachloronitrobenzene (PCNB) as a co-substrate. Dechlorination of spiked octa-CDF was observed with the production of hepta-, hexa-, penta- and tetra-CDFs over 6 months. Two major phylotypes of the Chloroflexi community showed an increase, one of which was identical to the Dehalococcoides mccartyi Pinellas subgroup. A set of twelve putative reductive dehalogenase (rdh) genes increased in abundance with addition of 1,2,3,4-tetra-CDF, 1,2,3,4-tetra-CDD and/or PCNB. This information will aid in understanding how indigenous microbial communities impact the fate of PCDFs and in developing strategies for bioremediation of PCDD/F contaminated sediments.
Show more [+] Less [-]Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter
2014
Rowe, E.C. | Tipping, E. | Posch, M. | Oulehle, F. | Cooper, D.M. | Jones, T.G. | Burden, A. | Hall, J. | Evans, C.D.
Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid–base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised.
Show more [+] Less [-]Chemical cocktails in aquatic systems: Pesticide effects on the response and recovery of >20 animal taxa
2014
Hua, Jessica | Relyea, Rick
Natural systems are often exposed to individual insecticides or combinations of multiple insecticides. Using an additive and substitutive design, we examined how populations and communities containing >20 animal taxa are affected by four insecticides applied individually and as a mixture for 18 wks in aquatic mesocosms. The four insecticides had distinct lethal effects on the response and recovery of cladocerans, copepods, amphipods, isopods, and amphibians but not snails. The lethal effect on cladocerans and copepods induced trophic cascades that facilitated algal blooms and abiotic changes (higher pH and dissolved oxygen, but lower light transmission). Exposure to endosulfan resulted in a lag effect reducing cladocerans and spring-breeding amphibian abundance. The reduction in spring-breeding amphibian abundance led to cascading indirect effects on summer-breeding amphibians. Finally, the mixture treatment had lethal effects throughout the community that led to long-term effects on amphibian mass and unique indirect consequences on phytoplankton and abiotic variables.
Show more [+] Less [-]Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the Himalayas, Nepal
2014
Studies have been devoted to the transport and accumulation of persistent organic pollutants (POPs) in mountain environments. The Himalayas have the widest altitude gradient of any mountain range, but few studies examining the environmental behavior of POPs have been performed in the Himalayas. In this study, air, soil, and leaf samples were collected along a transect on the southern slope of the Himalayas, Nepal (altitude: 135–5100 m). Local emission occurred in the lowlands, and POPs were transported by uplift along the slope. During the atmospheric transport, the HCB proportion increased from the lowlands (20%) to high elevation (>50%), whereas the proportions of DDTs decreased. The largest residue of soil POPs appeared at an altitude of approximately 2500 m, and may be related to absorption by vegetation and precipitation. The net deposition tendencies at the air–soil surface indicated that the Himalayas may be a ‘sink’ for DDTs and PCBs.
Show more [+] Less [-]Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments
2014
Lin, Angela Yu-Chen | Lin, Yanjing | Lee, Wan-Ning
This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L−1 level in the hospital effluents and the ng L−1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment.
Show more [+] Less [-]