Refine search
Results 201-210 of 6,560
Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors Full text
2020
Mao, Yufeng | Li, Hong | Gu, Weikang | Yang, Guofeng | Liu, Yao | He, Qiang
As inland freshwaters act as a major transport pathway for marine microplastic pollution, microplastic pollution in freshwater systems has recently received growing attention. However, the role of environmental and spatial factors in shaping the distribution and characteristics of microplastic pollution in reservoir ecosystems is not well understood. Here, we studied microplastic pollution in the surface water of the Yulin River, a typical tributary of the upper reaches of the Three Gorges Reservoir (TGR). The abundance of microplastics were 1.30 × 10⁻², 1.95 × 10⁻¹ and 3.60 × 10⁻¹ items/L in the mainstream, tributaries and bays of the Yulin River, respectively. Polyethylene, polypropylene, and polystyrene were identified as the predominant types. The most common shapes were line/fiber and foam. Small-sized particles dominated the collected microplastics. Aged surface was identified by scanning electron microscopy and X-ray photoelectron spectroscopy. The microplastics in the Yulin River were largely of secondary origin. Microplastic pollution varied in space. The abundance of microplastic was higher upstream reaches than downstream, which was correlated with anthropogenic activity. The backwater of the TGR increased the abundance of microplastic in the estuary of the Yulin River. The abundance of microplastic was negatively correlated with the channel width. This study is helpful for understanding the characterics and distribution of microplastics in reservoir ecosystems within underdeveloped area, and can thereby inform well-directed strategies to mitigate microplastic pollution.
Show more [+] Less [-]Exposure to a microplastic mixture is altering the life traits and is causing deformities in the non-biting midge Chironomus riparius Meigen (1804) Full text
2020
Stanković, Jelena | Milošević, Djuradj | Savić-Zdraković, Dimitrija | Yalçın, Gülce | Yildiz, Dilvin | Beklioğlu, Meryem | Jovanović, Boris
The effect of microplastics (MP) exposure on the chironomid species Chironomus riparius Meigen, 1804 was investigated using the OECD sediment and water toxicity test. Chironomid larvae were exposed to an environmentally relevant low microplastics concentration (LC), a high microplastics concentration (HC) and a control (C). The LC was 0.007 g m⁻² on the water surface + 2 g m⁻³ in the water column + 8 g m⁻² in the sediment, and the HC was 10 X higher than this for each exposure. The size of the majority of the manufactured microplastic pellets varied between 20 and 100 μm. The MP mixture consisted of: polyethylene-terephtalate (PET), polystyrene (PS), polyvinyl-chloride (PVC) and polyamide (PA) in a ratio of 45%: 15%: 20%: 20%, respectively, for the sediment exposure; 100% polyethylene for the water column exposure; and 50% polyethylene: 50% polypropylene for the water surface exposure. Different endpoints were monitored, including morphological changes in the mandibles and mentums of 4th instar larvae, morphological changes in the wings, mortality, emergence ratio, and developmental time. A geometric morphometric analysis showed a tendency toward widening of the wings, elongation of the mentums and changing the shape of the mandibles in specimens exposed to both concentrations of microplastics. The development time of C. riparius was significantly prolonged by the MP treatment: 13.8 ± 0.5; 14.4 ± 0.6; and 15.3 ± 0.4 days (mean ± SD) in the C, LC, and HC, respectively. This study indicates that even environmentally relevant concentrations of MP mixture have a negative influence on C. riparius, especially at the larval stage.
Show more [+] Less [-]Airborne antibiotic resistance genes in Hong Kong kindergartens Full text
2020
Li, Na | Chai, Yemao | Ying, Guang-Guo | Jones, K. C. (Kevin C.) | Deng, Wen-Jing
Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) have become a critical global public health issue in this century. There is increasing evidence for the presence and transmission of ARGs by air transmission. In this research, ARGs and ARB in air conditioner filter dust (AC dust) and urine samples from 55 kindergarten children in 17 kindergartens and nearby 10 soil samples in Hong Kong were analyzed. The results showed the presence of 16 ARG subtypes and the mobile genetic element (MGE) intI1 in AC dust, and 12 ARG subtypes in the soil samples. ARGs presenting resistance to sulfonamide (6.9 × 10⁻³–0.17) (expressed as relative abundance of the 16 S rRNA genes) were most abundant followed by macrolides (1.8 × 10⁻³–3.3 × 10⁻²), sul1, sul2 (sulfonamide), ermF (macrolides) and intI1 genes in AC dust in 17 kindergartens. For soil samples, 12 ARG subtypes and the intI1 were detected, and the genes providing resistance to sulfonamide (1.6 × 10⁻³–2.7 × 10⁻¹) were the most abundant ARGs in the 10 soil samples, followed by tetracycline (ND–1.4 × 10⁻²). Multi-resistant bacteria with sul1, sul2, intI1, or tetQ were detected in all AC dust samples and some urine samples. Based on bacterial genera and ARG co-occurrence network analysis and Hong Kong’s special geographical location and cultural environment, there might be two origins for the ARGs detected in the kindergartens: β-lactam/macrolide ARGs mainly derived from human medicine use and tetracycline/sulfonamide ARGs mainly from other areas, as well as IntI1 may play a role in the spread of ARGs in Hong Kong. The widely detection of ARGs in AC dust in kindergartens in Hong Kong highlights the need for the improvement of management measures.
Show more [+] Less [-]Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China Full text
2020
Fourteen perfluoroalkyl substances (PFASs) in fishery organism, surface seawater, river water, rainwater, and wastewater samples collected from Jiaozhou Bay (JZB) in China and its surrounding area were determined to understand their contamination status, sources, health risk, and causes of spatiotemporal variations in the aquatic environment of a temperate bay adjacent to a metropolis. The total concentration of PFASs in 14 species of fishery organisms ranged from 1.77 ng/g to 31.09 ng/g wet weight, and perfluorooctane sulfonate (PFOS) was the dominant PFAS. ∑PFASs concentration in surface seawater ranged from 5.54 ng/L to 48.27 ng/L over four seasons, and dry season (winter and spring) had higher levels than wet season (summer and autumn). Perfluorooctanoic acid (PFOA) was the predominant individual PFAS in seawater, indicating that notorious C8 homologs remained the major PFASs in this region. The seasonal variation in seawater concentrations of three major PFASs, namely, PFOA, perfluoroheptanoic acid, and perfluorononanoic acid, was similar to that of ∑PFASs. However, the seasonal variation of PFOS concentration was different from that of ∑PFASs, with the lowest in winter and the highest in spring. In general, seasonal variations of terrigenous input and water exchange capacity were the main reasons for the spatiotemporal variation of PFASs in the aquatic environment of JZB. Moreover, bioselective enrichment for individual PFAS affected the partition of PFASs in different environment medium. Wet precipitation, sewage discharge, and surface runoff were the main sources of PFASs in this area. Nevertheless, the contribution of different sources to individual PFAS indicated a clear difference, and wastewater and river water were not consistently the most important source for every PFAS. Preliminary risk assessment revealed that the consumption of seafood, especially fish, from JZB might pose a certain extent of health risk to local consumers based on their estimated daily intake of PFASs.
Show more [+] Less [-]Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow Full text
2020
Liu, Wei | Yang, Jing | Li, Jingwen | Zhang, Jiangyu | Zhao, Jing | Yu, Dan | Xu, Yukang | He, Xin | Zhang, Xin
The abnormality in thyroid hormone modulation in developmental fish, vulnerable to per- and polyfluorinated substances, is of particular concerns for the alternative substances. Juvenile rare minnows, were exposed to chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), the novel alternatives to perfluorooctane sulfonate (PFOS), for 4 weeks followed by 12 weeks of depuration. Half lives were determined to be 33 d, 29 d, and 47 d for total Cl-PFESAs, C8 Cl-PFESA and C10 Cl-PFESA, respectively. Preliminary toxicity test suggested that Cl-PFESAs are moderately toxic to Rare minnow with a LC50 of 20.8 mg/L (nominal concentration) after 96 h of exposure. In the chronic toxicity test, fishes were exposed to Cl-PFESAs at geometric mean measured concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L. In juvenile fishes exposed to Cl-PFESAs for 4 weeks, gene profile sequencing analysis identified 3313 differentially expressed genes, based on which pathways regulating thyroid hormone synthesis and steroid synthesis were enriched. Both whole body total and free 3,5,3′-triiodothyronine (T3) levels were significantly increased. mRNA expression of genes regulating thyroid hormone synthesis (corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (THS), sodium/iodide symporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO), transport (transthyretin,TTR), deiodinase (Dio1, Dio2) and receptor (TRα and TRβ) were decreased. Uridinediphosphate glucoronosyl-transferases (UGT1A) gene, regulating THs metabolism, was also decreased. In adult fish, thyroid hormone and genes expression in hypothalamic-pituitary-thyroid axis remained at disturbed levels after 12 weeks of depuration without exposure. Chronic developmental exposure to Cl-PFESAs caused persistent thyroid hormone disrupting effects in fish, highlighting a necessity of comprehensive ecological risk assessment.
Show more [+] Less [-]Exposure to air pollution during the first 1000 days of life and subsequent health service and medication usage in children Full text
2020
Evidence of health effects following early life exposure to short-to-medium duration of high pollution levels is extremely limited.We aimed to evaluate the associations between: 1. intrauterine exposure to fine particulate matter (PM2.5) from coal mine fire emissions and the frequencies of general practitioner attendances and dispensations of prescribed asthma inhalers, steroid skin creams, and antibiotics during the first year of life; 2. infant exposure and those outcomes during the year following the fire.All participants were recruited from the Latrobe Valley of Victoria, Australia. Participants’ 24-h average and hourly peak mine fire-specific PM2.5 exposures from 09/02/2014 to 31/03/2014 were estimated using chemical transport modelling. Outcome data were obtained from the Australian Medicare Benefits Schedule and Pharmaceutical Benefits Scheme from each child’s birth to 31/12/2016. We used negative binomial and logistic regression models to independently assess risks of the outcomes associated with every 10 and 100 μg m−3 increase in average or peak PM2.5 exposure, respectively, while adjusting for potential confounders.We included 286 of 311 children whose parents consented to be linked, comprising 77 with no exposure, 88 with intrauterine exposure and 121 with exposure in infancy. 10- and 100- μg m−3 increases in average and peak PM2.5 exposure during infancy were associated with greater incidence of antibiotics being dispensed during the year following the fire: the adjusted incidence rate ratios were 1.24 (95% CI 1.02, 1.50, p = 0.036) and 1.14 (1.00, 1.31, p = 0.048) respectively. No other significant associations were observed.Exposure to coal mine fire emissions during infancy was associated with increased dispensing of antibiotics. This could reflect increased childhood infections or increased prescriptions of antibiotics in the year following the fire.
Show more [+] Less [-]Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal Full text
2020
Yan, Jingchun | Yang, Lei | Qian, Linbo | Han, Lu | Chen, Mengfang
Nano-magnetite supported by biochar (nFe₃O₄/BC) pyrolyzed at temperatures of 300 °C–600 °C was developed to activate hydrogen peroxide (H₂O₂) for the efficient degradation of ethylbenzene in aqueous solution. It was revealed that the degradation efficiency of ethylbenzene and TOC removal were 96.9% and 36.2% respectively after the reaction for 40 min in the presence of initial concentration of 0.1 mmol L⁻¹ ethylbenzene, 2.76 g L⁻¹ nFe₃O₄/BC₅₀₀ with the mass ratio of nFe₃O₄ to BC₅₀₀ of 4:1 and 2.0 mmol L⁻¹ H₂O₂ at pH 7.0. Based on electron paramagnetic resonance (EPR), quenching experiment and X-ray photoelectron spectroscopy (XPS) data, both OH and O₂⁻ radicals were generated in the nFe₃O₄/BC₅₀₀ activated H₂O₂ system, and the OH radicals were the predominant species for the degradation of ethylbenzene. Through electron transfer process, mechanisms of Fe(II), phenolic hydroxyl group and persistent free radicals (PFRs) on BC surfaces accounted for the generation of OH radicals, and Fe(III) in nFe₃O₄ and formed from Fe(II) oxidation responsible for the generation of O₂⁻ radicals in the nFe₃O₄/BC activated H₂O₂ system were proposed.
Show more [+] Less [-]Environmental impact and recovery of the Bohai Sea following the 2011 oil spill Full text
2020
Wang, Yujue | Lee, Kenneth | Liu, Dongyan | Guo, Jie | Han, Qiuying | Liu, Xihan | Zhang, Jingjing
The 2011 spill at platforms B and C of the Penglai 19-3 oil field in the Bohai Sea has been the worst oil spill accident in China. To assess long-term effects, a comprehensive monitoring program of chemical and biological variables (within a 2.2 km radius of the spill site) was conducted five years after the spill. Comparison of nutrient, Chl-a and oil concentrations in seawater, TOC, PAHs, heavy metals concentrations within the sediments, and the abundance and biomass of macrobenthic organisms to values obtained before and after the oil spill in previous studies indicate habitat recovery has occurred within the Bohai Sea following the episodic oil release. Observed elevated oil concentration in the water column and higher concentrations of two heavy metals, five PAHs, TOC, TOC/TN and lower values of δ¹³C, together with a reduction in macrobenthic biomass in near-field samples, suggest the influence of contaminants from chronic releases of oil and operational waste discharges within the vicinity of the oil platforms.
Show more [+] Less [-]Determination of (Bio)-available mercury in soils: A review Full text
2020
Huang, Jen-How | Shetaya, Waleed H. | Osterwalder, Stefan
Despite the mercury (Hg) control measures adopted by the international community, Hg still poses a significant risk to ecosystem and human health. This is primarily due to the ability of atmospheric Hg to travel intercontinentally and contaminating terrestrial and aquatic environments far from its natural and anthropogenic point sources. The issue of Hg pollution is further complicated by its unique physicochemical characteristics, most noticeably its multiple chemical forms that vary in their toxicity and environmental mobility. This meant that most of the risk evaluation protocols developed for other metal(loid)s are not suitable for Hg. Soil is a major reservoir of Hg and a key player in its global cycle. To fully assess the risks of soil Hg it is essential to estimate its bioavailability and/or availability which are closely linked to its toxicity. However, the accurate determination of the (bio)-available pools of Hg in soils is problematic, because the terms ‘bioavailable’ and ‘available’ are ill-defined. In particular, the term ‘bioavailable pool’, representing the fraction of Hg that is accessible to living organisms, has been consistently misused by interchanging with other intrinsically different terms e.g. mobile, labile, reactive and soluble pools. A wide array of physical, chemical, biological and isotopic exchange methods were developed to estimate the (bio)-available pools of Hg in soil in an attempt to offer a plausible assessment of its risks. Unfortunately, many of these methods do not mirror the (bio)-available pools of soil Hg and suffer from technical drawbacks. In this review, we discuss advantages and disadvantages of methods that are currently applied to quantify the (bio)-availability of Hg in soils. We recommended the most feasible methods and give suggestions how to improve the determination of (bio)-available Hg in soils.
Show more [+] Less [-]Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production Full text
2020
Zhen, Huayang | Jia, Li | Huang, Caide | Qiao, Yuhui | Li, Ji | Li, Huafen | Chen, Qing | Wan, Yanan
Heavy metal contamination in protected-field vegetable production has aroused widespread concern and manure is considered to be one of the contamination sources. Little is known about its long-term effects on heavy metal pollution in uncontaminated soils. A 15-year protected-field vegetable production experiment was carried out with three manure treatments (chicken manure: cattle manure = 3:1) with high (HMAR), medium (MMAR) and low (LMAR) application rates to evaluate the long-term risks of heavy metal pollution. It was found that continuous and high manure application rates significantly increased the total concentrations of soil Cd, Zn, Cr, and Cu rather than Pb, Ni or As. The high application rate of manure also increased soil available heavy metals although the soil organic matter was increased as well. Though total soil Cd under the HMAR exceeded the threshold of national soil standard, Cd content in tomato and fennel still complied with the food safety requirements of vegetables. Generally, the accumulation rates of soil Zn, Cu, and Cr with 1 t⋅ha⁻¹ of manure application in three treatments were ranked by HMAR < MMAR < LMAR. Based on the results of the ratio of heavy metal accumulation risk (RAR), Zn, Cu, and Cr under HMAR and Cd and Zn under MMAR would exceed their soil threshold values within 100 years and RAR could be a useful indicator for monitoring the long-term risk of soil heavy metal pollution. Recommended manure application rates to guarantee a 100-year period of clean production were 44, 74, and 63 t⋅ha⁻¹⋅yr⁻¹ for Zn, Cu, and Cr, respectively. Measurements should be taken to minimize the risk of heavy metals (Cd, Zn, Cr, and Cu) pollution sourced from manure to ensure food safety and ‘cleaner’ protected-field vegetable production.
Show more [+] Less [-]