Refine search
Results 2051-2060 of 4,308
Kinetic and Thermodynamic Studies of Chlorinated Organic Compound Degradation by Siderite-Activated Peroxide and Persulfate Full text
2017
Yan, Ni | Li, Mengjiao | Liu, Yali | Liu, Fei | Brusseau, Mark L.
The efficacy of two oxidant systems, iron-activated hydrogen peroxide (H₂O₂) and iron-activated hydrogen peroxide coupled with persulfate (S₂O₈²⁻), was investigated for treatment of two chlorinated organic compounds, trichloroethene (TCE) and 1,2-dichloroethane (DCA). Batch tests were conducted at multiple temperatures (10–50 °C) to investigate degradation kinetics and reaction thermodynamics. The influence of an inorganic salt, dihydrogen phosphate ion (H₂PO₄⁻), on oxidative degradation was also examined. The degradation of TCE was promoted in both systems, with greater degradation observed for higher temperatures. The inhibition effect of H₂PO₄⁻ on the degradation of TCE increased with increasing temperature for the iron-activated H₂O₂ system but decreased for the iron-activated hydrogen peroxide-persulfate system. DCA degradation was limited in the iron-activated hydrogen peroxide system. Conversely, significant DCA degradation (87% in 48 h at 20 °C) occurred in the iron-activated hydrogen peroxide-persulfate system, indicating the crucial role of sulfate radical (SO₄⁻∙) from persulfate on the oxidative degradation of DCA. The activation energy values varied from 37.7 to 72.9 kJ/mol, depending on the different reactants. Overall, the binary hydrogen peroxide-persulfate oxidant system exhibited better performance than hydrogen peroxide alone for TCE and DCA degradation.
Show more [+] Less [-]Bacterial Community Composition and Genes for Herbicide Degradation in a Stormwater Wetland Collecting Herbicide Runoff Full text
2017
Mauffrey, Florian | Baccara, Pierre-Yves | Gruffaz, Christelle | Vuilleumier, Stéphane | Imfeld, Gwenaël
Stormwater wetlands collect and attenuate runoff-related herbicides, limiting their transport into aquatic ecosystems. Knowledge on wetland bacterial communities with respect to herbicide dissipation is scarce. Previous studies showed that hydrological and hydrochemical conditions, including pesticide removal capacity, may change from spring to summer in stormwater wetlands. We hypothesized that these changes alter bacterial communities, which, in turn, influence pesticide degradation capacities in stormwater wetland. Here, we report on bacterial community changes in a stormwater wetland exposed to pesticide runoff, and the occurrence of trz, atz, puh, and phn genes potentially involved in the biodegradation of simazine, diuron, and glyphosate. Based on T-RFLP analysis of amplified 16S rRNA genes, a response of bacterial communities to pesticide exposure was not detected. Changes in stormwater wetland bacterial community mainly followed seasonal variations in the wetland. Hydrological and hydrochemical fluctuations and vegetation development in the wetland presumably contributed to prevent detection of effects of pesticide exposure on overall bacterial community. End point PCR assays for trz, atz, phn, and puh genes associated with herbicide degradation were positive for several environmental samples, which suggest that microbial degradation contributes to pesticide dissipation. However, a correlation of corresponding genes with herbicide concentrations could not be detected. Overall, this study represents a first step to identify changes in bacterial community associated with the presence of pesticides and their degradation in stormwater wetland.
Show more [+] Less [-]Use of Lysimeters to Assess Water Balance Components in Grassland and Atlantic Forest in Southern Brazil Full text
2017
Feltrin, Rafael Matias | Paiva, João Batista Dias de | de Paiva, Eloiza Maria Cauduro Dias | Meissner, Ralph | Rupp, Holger | Borg, Heinz
This study aimed to quantify the water balance components at a grassland and a forest site representative of the Atlantic Forest biome in southern Brazil using drainage lysimeters. Since it was not possible to place mature trees on the forest lysimeter, it was planted with young trees and understory vegetation. Data from this lysimeter and computations with the water balance and the Penman-Monteith equation were then used to assess the values of the water balance components for the mature forest.Total precipitation during the study period was 2308 mm. In the forest environment, 46% thereof was intercepted by the canopy from where it later evaporated. Hence, much less rain reached the ground than under grassland. Runoff from both sites was <1% of precipitation and therefore not a significant factor in the water balance. Cumulative drainage amounted to 1136 mm from grassland: from the mature forest, it was estimated to be 389 mm. There were two reasons for this low value under forest: Interception prevented a lot of water from reaching the ground, and the actual evapotranspiration from the mature forest was much higher than from grassland (1231 mm compared to 1964 mm).
Show more [+] Less [-]Potentially Toxic Trace Metals in Water and Lake-Bed Sediment of Panchpokhari, an Alpine Lake Series in the Central Himalayan Region of Nepal Full text
2017
Raut, Rosha | Bajracharya, Roshan M. | Sharma, Subodh | Sharma, Chhatra Mani | Kang, Shichang | Zhang, Qianggong | Tripathee, Lekhendra | Chen, Pengfei | Rupakheti, Dipesh | Guo, Junming | Dongol, Bhawani S.
This study assessed the level of potentially toxic trace metals (PTMs), seasonal variations, and their possible sources from the surface water and lake-bed sediment of Panchpokhari lake series, an alpine and glacial lake at 4160 m a.s.l. in Central Nepal. The lake series have five lakes, with Lake-1 larger than others. So, Lake-1 was investigated thoroughly during pre-monsoon and post-monsoon seasons. Sediment core was collected from the deepest basin of the Lake-1 during pre-monsoon. Most of the PTM concentrations were higher in the pre-monsoon season; however, Sc, Cr, Cu, Zn, As, and Ag were higher in the post-monsoon. This is an indication that the lake has been impacted either by natural or long-range transported atmospheric pollutants. Ti, Sb, and Ag had extremely high enrichment factor (EF) in waters, whereas Cd, Zn, and As had high EF in sediments indicating that these metals originated from anthropogenic sources. Furthermore, PTM concentrations in the sediment were in the increasing order of Hg < Cd < Ag < Mo < Sb < Sn < As < U < Sc < Co < Cs < Cu < Pb < Ni < Cr < V < Zn < Rb < Mn < Ti < Fe and showed that the upper layer (top 10 cm) of lake sediment has been receiving a higher load of PTMs in the recent period. he observed EF values also suggested that major sources of PTMs in the sediment were from crustal origin except for a few metals (Ti, V, Sb, and Ag) which were enriched anthropogenically due to long-range transport of atmospheric pollutants, deposited at the higher elevations. Nevertheless, the level of pollution in sediments was low as indicated both by EF and geo-accumulation index.
Show more [+] Less [-]Rhizobacterial Pseudomonas spp. Strains Harbouring acdS Gene Could Enhance Metallicolous Legume Nodulation in Zn/Pb/Cd Mine Tailings Full text
2017
Soussou, Souhir | Brunel, Brigitte | Pervent, Marjorie | van Tuinen, Diederik | Cleyet-Marel, Jean-Claude | Baudoin, Ezékiel
Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg⁻¹, respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg⁻¹). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17–43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17–22 (1.5–1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.
Show more [+] Less [-]System Development for Concomitant Degradation of Pesticides and Power Generation Full text
2017
Peiter, Andréia | Fiuza, Tanna E. R. | de Matos, Roberto | Antunes, Augusto Celso | Antunes, Sandra Regina Masetto | Lindino, Cleber A.
To meet demand for processes that minimize the environmental impact generated by waste, efficient systems that degrade such substances and use them as an alternative source for renewable energy generation are increasingly becoming needed. Increased food production to meet the needs of the world’s increasing population has encouraged the use of agrochemicals in order to ensure productivity in crops. However, excessive use of pesticides has caused contamination of natural systems and, therefore, of living beings. In this context, this work presents an alternative plan for an integrated system that simultaneously remediates contaminated environments and generates electricity using a Cu/CuO electrode as a photocatalyst. The materials were prepared from reagents and accessible metals, which reduced costs and contributed to a clean process, without using organic additives. The results showed that the generation of current in an area 6.9 cm² was 193.37 μA for potassium hydrogen phthalate degradation. The Aminol 806® and Connect® pesticides were degraded by 54.46 and 21.02%, respectively, after 90 min in the system, under ultraviolet radiation. The results showed that, at pH 2.0, the generation of current was 2493.2 mA (36.165 mA m⁻²) for Aminol 806® and 7.894 mA (0.114 mA m⁻²) for Connect®. The degradation of organic contaminants and simultaneous power generation of energy in the integrated system provides a self-sustaining form of environmental remediation and energy recovery, and its use is possible on a large scale.
Show more [+] Less [-]Effect of Fixed Media Surface Area on Biofouling and Nutrients Removal in Fixed Film Membrane Bioreactor Treating Sewage at Medium and High Fluxes Full text
2017
Zeeshan, Muhammad | Haydar, Sajjad | Tabraiz, Shamas
This study investigates effects of fixed film surface area increment on removal efficacy and biofouling in membrane bioreactor (MBR). For this purpose, a lab-scale membrane bioreactor was used. Domestic wastewater was fed into it. Three different trials were conducted at different fluxes; 15, 20, and 25 L/m²/h (LMH). Every trial was conducted using four different scenarios by varying surface area of fixed media viz. 0, 100, 150, and 200 m²/m³. Removal of pollutants viz. chemical oxygen demand (COD), biochemical oxygen demand (BOD), total organic content (TOC), total Khjdel nitrogen (TKN), and phosphorous was studied. In addition, cake resistance, pore resistance, and total resistance were also observed for aforementioned scenarios. The results demonstrated that pollutant removal efficiencies increased as the surface area per unit volume of bioreactor was increased. Conversely, the removal efficiency decreased with increase in the fluxes. In the case of biofouling, it increased while increasing the surface area or flux. The fixed media surface area increments proved beneficial in terms of removal efficiencies but at the cost of reduced operation time of MBR.
Show more [+] Less [-]Highly Efficient Adsorption of Rh(III) from Chloride Containing Solutions by Triazine Polyamine Polymer Full text
2017
Sayın, Merve | Can, Mustafa | Imamoglu, Mustafa | Arslan, Mustafa
Adsorption of Rh(III) ions from the aqueous phase containing chloride ions was investigated batchwise using 1,3,5-triazine pentaethylenehexamine (TAPEHA) resin, which is highly resistant to strong acidic conditions. The effects of pH, temperature, initial concentration, and contact time on adsorption were examined. Rh(III) adsorption is favorable from the aqueous phase containing 3.0 and 0.1 M HCl. In both acidic cases, Langmuir is best fitting isotherm equation to system. The kinetics of Rh(III) adsorption on TAPEHA polymer was found to obey the pseudo-second-order kinetic equation, at both cases. Langmuir monolayer adsorption capacities were calculated as 327.03 and 113.76 mg/g in 3.0 and 0.1 M HCl, respectively. Experimental maximum adsorption capacities were measured as 198 and 100 mg/g in 3.0 and 0.1 M HCl, respectively. Due to different Rh(III) complexes with chlorine depending on acid concentrations, adsorption of Rh(III) from solutions containing 3.0 and 0.1 M HCl occurred via two different mechanisms; namely, ion exchange and surface complexation. The reuse of TAPEHA was also studied by column procedure, and the adsorption capacity of TAPEHA was not changed by using it five times. Adsorbed Rh(III) ions onto TAPEHA were completely eluted with thiourea 3% (w/v) in 1.0 M HCl. These findings showed that TAPEHA has a high resistance to acidic solutions and a higher Rh(III) uptake capacity than commercial adsorbents. Hence it can be used for rhodium recycling.
Show more [+] Less [-]Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory Full text
2017
Zhu, Guangxu | Guo, Qingjun | Xiao, Huayun | Chen, Tongbin | Yang, Jun
Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.
Show more [+] Less [-]The Effects of Low Concentrations of Silver Nanoparticles on Wheat Growth, Seed Quality, and Soil Microbial Communities Full text
2017
Liu, Guangfu | Zhang, Meng | Jin, Yujian | Fan, Xiaoji | Chui, Kawai | Zhu, Youchao | Fu, Zhengwei | Pan, Xiangliang | Qian, Haifeng
The growing demand for and production of commercial silver nanoparticles (AgNPs) inevitably increases the risk for their environmental release and soil accumulation, which could have deleterious effects on plant growth and soil microorganism communities. However, to date, little is known about how AgNPs impact plant growth, seed quality, and soil microbial communities. We therefore evaluated wheat growth and seed quality after exposure to low concentration of AgNPs while characterizing the composition of the associated soil microbial community by high-throughput sequencing of 16S rRNA genes. Our results showed that low concentration of AgNPs (1 mg/kg in fresh soil) neither inhibited wheat seedling growth nor changed the amino acid content in wheat seeds. Interestingly, the soil microorganisms in the wheat-planted group had more diversity and richness than those in the bulk-soil group. The structure of the bacterial community was affected by AgNP exposure, most significantly during the transition from the seedling to the vegetative stage of the wheat, but recovered to normal level after 49 days of treatment. In conclusion, the results from this study highlight that the environmental risks associated with low concentration of AgNPs, which have clear bioeffects on soil microorganisms, warrant further investigation.
Show more [+] Less [-]