Refine search
Results 211-220 of 5,098
Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa
2018
Lu, Tao | Zhu, Youchao | Chui, Kawai | Ke, Mingjing | Zhang, Meng | Tan, Chengxia | Fu, Zhengwei | Qian, Haifeng
The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5–10 mg L⁻¹) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L⁻¹ AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism.
Show more [+] Less [-]Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean
2018
Kapp, Kirsten J. | Yeatman, Ellen
It is widely understood that microplastics (MPs) are ubiquitous in the marine environment yet less is known about MP abundance in freshwater rivers, particularly those of the western United States. This study documents MP pollution along the Snake River (∼1735 km) and from its confluence with the Columbia River to the Pacific Ocean. Grab and plankton net samples (mesh size 100 μm) were collected from the top 25 cm of surface water every 80.5 river km. MPs were identified if they met visual criteria and were verified with the hot needle test. A small representative subset of MPs from the net samples (16.7%) were selected based on appearance for micro-Raman spectroscopy in effort to provide examples of polymer types found in this study. Seventy-five percent of grab samples and 92.8% of net samples contained MPs, with concentrations ranging from 0 to 5.405 MP L−1 and 0 to 0.014 MP L−1 (0 to 13.7 MP m−3), respectively. The majority of fragments, films and beads were between 100 μm and 333 μm. This study identifies potential hotspots of MP pollution along the Snake and Lower Columbia rivers and prioritizes areas where more intensive sampling is needed. Sites with low flow or those further down river had higher numbers and the top two hotspots were located in areas with low population density but high agricultural use. Monitoring MP abundance in freshwater systems is important for establishing baseline levels of MP pollution and can direct laboratory toxicology studies in using more environmentally relevant concentrations for a better indication of how MP pollution affects ecosystems.
Show more [+] Less [-]Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests
2018
Oulehle, Filip | Tahovská, Karolina | Chuman, Tomáš | Evans, C. D. (Chris D.) | Hruška, Jakub | Růžek, Michal | Bárta, Jiří
Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global “hot spots” of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.
Show more [+] Less [-]Validation of mobile in situ measurements of dairy husbandry emissions by fusion of airborne/surface remote sensing with seasonal context from the Chino Dairy Complex
2018
Leifer, Ira | Melton, Christopher | Tratt, David M. | Buckland, Kerry N. | Chang, Clement S. | Frash, Jason | Hall, Jeffrey L. | Kuze, Akihiko | Leen, Brian | Clarisse, Lieven | Lundquist, Tryg | Van Damme, Martin | Vigil, Sam | Whitburn, Simon | Yurganov, Leonid
Mobile in situ concentration and meteorology data were collected for the Chino Dairy Complex in the Los Angeles Basin by AMOG (AutoMObile trace Gas) Surveyor on 25 June 2015 to characterize husbandry emissions in the near and far field in convoy mode with MISTIR (Mobile Infrared Sensor for Tactical Incident Response), a mobile upwards-looking, column remote sensing spectrometer. MISTIR reference flux validated AMOG plume inversions at different information levels including multiple gases, GoogleEarth imagery, and airborne trace gas remote sensing data. Long-term (9-yr.) Infrared Atmospheric Sounding Interferometer satellite data provided spatial and trace gas temporal context.For the Chino dairies, MISTIR-AMOG ammonia (NH₃) agreement was within 5% (15.7 versus 14.9 Gg yr⁻¹, respectively) using all information. Methane (CH₄) emissions were 30 Gg yr⁻¹ for a 45,200 herd size, indicating that Chino emission factors are greater than previously reported.Single dairy inversions were much less successful. AMOG-MISTIR agreement was 57% due to wind heterogeneity from downwind structures in these near-field measurements and emissions unsteadiness. AMOG CH₄, NH₃, and CO₂ emissions were 91, 209, and 8200 Mg yr⁻¹, implying 2480, 1870, and 1720 head using published emission factors. Plumes fingerprinting identified likely sources including manure storage, cowsheds, and a structure with likely natural gas combustion.NH₃ downwind of Chino showed a seasonal variation of a factor of ten, three times larger than literature suggests. Chino husbandry practices and trends in herd size and production were reviewed and unlikely to add seasonality. Higher emission seasonality was proposed as legacy soil emissions, the results of a century of husbandry, supported by airborne remote sensing data showing widespread emissions from neighborhoods that were dairies 15 years prior, and AMOG and MISTIR observations. Seasonal variations provide insights into the implications of global climate change and must be considered when comparing surveys from different seasons.
Show more [+] Less [-]Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints
2018
Pusceddu, F.H. | Choueri, R.B. | Pereira, C.D.S. | Cortez, F.S. | Santos, D.R.A. | Moreno, B.B. | Santos, A.R. | Rogero, J.R. | César, A.
The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g⁻¹, respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g⁻¹ for TCS and 15 ng g⁻¹ for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g⁻¹ for TCS and 0.15 ng g⁻¹ for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms exposed to PPCP.
Show more [+] Less [-]Quadratic discriminant analysis model for assessing the risk of cadmium pollution for paddy fields in a county in China
2018
Wang, Xiumei | Li, Xiujian | Ma, Ruoyu | Li, Yue | Wang, Wei | Huang, Hanyu | Xu, Chenzi | An, Yi
In China, the cadmium (Cd) levels in paddy fields have increased, which has led to the excessive uptake of Cd into rice grains. In this study, we determined the physicochemical properties of soil samples, including the pH, soil organic matter (SOM) content, cation exchange capacity (CEC), and total Cd content (Cdsoil) in order to establish a quadratic discriminant analysis (QDA) model for assessing the risk of Cd in rice and to calculate its prior probability. Decision tree and logistic regression models were also established for comparison. The results showed that the accuracy rate was 74% with QDA, which was significantly higher than that obtained using the decision tree (67%) and logistic regression (68%) models. The correlation coefficients between the soil pH and the other three factors (CEC, SOM, and Cdsoil) were higher in the inaccurate set than the accurate set, whereas the correlation coefficients were smaller in the inaccurate set than the accurate set.
Show more [+] Less [-]An assessment of polyurethane foam passive samplers for atmospheric metals compared with active samplers
2018
Li, Qilu | Yang, Kong | Li, Jun | Zeng, Xiangying | Yu, Zhiqiang | Zhang, Gan
In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment.
Show more [+] Less [-]Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment
2018
Bari, Md Aynul | Kindzierski, Warren B.
An investigation of ambient levels and sources of volatile organic compounds (VOCs) and associated public health risks was carried out at two northern Alberta oil sands communities (Fort McKay and Fort McMurray located < 25 km and >30 km from oil sands development, respectively) for the period January 2010–March 2015. Levels of total detected VOCs were comparatively similar at both communities (Fort McKay: geometric mean = 22.8 μg/m³, interquartile range, IQR = 13.8–41 μg/m³); (Fort McMurray: geometric mean = 23.3 μg/m³, IQR = 12.0–41 μg/m³). In general, methanol (24%–50%), alkanes (26%–32%) and acetaldehyde (23%–30%) were the predominant VOCs followed by acetone (20%–24%) and aromatics (∼9%). Mean and maximum ambient concentrations of selected hazardous VOCs were compared to health risk screening criteria used by United States regulatory agencies. The Positive matrix factorization (PMF) model was used to identify and apportion VOC sources at Fort McKay and Fort McMurray. Five sources were identified at Fort McKay, where four sources (oil sands fugitives, liquid/unburned fuel, ethylbenzene/xylene-rich and petroleum processing) were oil sands related emissions and contributed to 70% of total VOCs. At Fort McMurray six sources were identified, where local sources other than oil sands development were also observed. Contribution of aged air mass/regional transport including biomass burning emissions was ∼30% of total VOCs at both communities. Source-specific carcinogenic and non-carcinogenic risk values were also calculated and were below acceptable and safe levels of risk, except for aged air mass/regional transport (at both communities), and ethylbenzene/xylene-rich (only at Fort McMurray).
Show more [+] Less [-]Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic
2018
Hadayat, Naila | De Oliveira, Letuzia M. | Da Silva, Evandro | Han, Lingyue | Hussain, Mumtaz | Liu, Xue | Ma, Lena Q.
Metal concentrations (As, Cd, Pb, Cr, Ba, Co, Ni, Cu, and Zn) in conventional and organic produce were assessed, specifically, five most-consumed vegetables from the US including potato, lettuce, tomato, carrot and onion. They were from four representative supermarkets in a college town in Florida. All vegetables contained detectable metals, while As, Cd, Pb, Cr, and Ba are toxic metals, Co, Ni, Cu, and Zn are nutrients for humans. The mean concentrations of As, Cd, Pb, Cr and Ba in five vegetables were 7.86, 9.17, 12.1, 44.8 and 410 μg/kg for organic produce, slightly lower than conventional produce at 7.29, 15.3, 17.9, 46.3 and 423 μg/kg. The mean concentrations of Co, Ni, Cu, and Zn in five vegetables were 3.86, 58.5, 632, and 2528 μg/kg for organic produce, comparable to conventional produce at 5.94, 68.2, 577, and 2354 μg/kg. For toxic metals, the order followed tomato < lettuce < onion < carrot < potato, with root vegetables being the highest. All metals in vegetables were lower than the allowable concentrations by FAO/WHO. Health risks associated with vegetable consumption based on daily intake and non-carcinogenic risk based on hazard quotient were lower than allowable limits. For the five most-consumed vegetables in the US, metal contents in conventional produce were slightly greater than organic produce, especially for Cd and Pb.
Show more [+] Less [-]Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus)
2018
Yan, Saihong | Wang, Miao | Liang, Xue-fang | Martyniuk, Christopher J. | Zha, Jinmiao | Wang, Zijian
To assess hepatotoxicity and to determine the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, histopathology and the liver proteome were examined after Chinese rare minnow (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 days. Histopathological changes included disruption of spatial structure, pyknotic nuclei, cellular vacuolization and deformation of cell nuclei, in addition to marked swelling of hepatocytes in all treatment groups. Protein analysis revealed that there were gender-specific responses in rare minnow following exposure, and there were 47 proteins in females and 22 proteins in males identified as differentially abundant following CBZ treatments. Pathway analysis revealed that cellular processes affected by CBZ included apoptosis, cell differentiation, cell proliferation, and the respiratory chain, indicating impaired energy homeostasis. Noteworthy was that 15 proteins identified as different in abundance were associated with carcinogenicity. Relative mRNA levels for select transcripts were consistent with the changes of proteins N-myc downstream regulated gene (NDRG), Tropomyosin 2-Beta (TPM2) and annexin A4 (ANXA4). Protein pyruvate kinase, liver and RBC (PKLR) were increased at 1 and 100 μg/L CBZ without significant difference in transcript levels. These findings characterize molecular responses and histological changes in the liver that generate new insights into CBZ hepatotoxicity in Chinese rare minnow.
Show more [+] Less [-]