Refine search
Results 211-220 of 4,921
Exploration of the reduction mechanism of Cr(VI) in anaerobic hydrogen fermenter
2019
Zheng, Xin | Yuan, Dong | Li, Youxuan | Liu, Chunguang
The bio-reduction of hexavalent chromium (Cr(VI)) by anaerobic fermentation is considered as a promising, low-cost and environment-friendly way. However, it is unclear for the reduction mechanisms of Cr(VI) in an anaerobic hydrogen fermenter, such as reduction kinetics, related electron donors, migration and transformation, reduction site and key components, and related microorganisms. To clarify these issues, a hydrogen fermenter was designed to reduce Cr(VI) at 55 °C with glucose as initial substrate. Results show that 100 mg/L Cr(VI) can be completely reduced (99.5%) to trivalent chromium (Cr(III) through chemical and biological reactions. Bio-reduction dominates Cr(VI) removal in a first-order exponential decay mode with both glucose and its metabolites (volatile fatty acids) as electron donors. Moreover, volatile fatty acids are more suitable as electron donors for Cr(VI) bio-reduction than glucose. Bacilli, Clostridia and Thermotogae in the fermenter dominated the reduction of Cr(VI) by regulating the production and composition of extracellular polymers (EPSs), in which carboxyl and hydroxyl groups play an important role for Cr(VI) reduction by coordination. The results can guide us to regulate the bio-reduction of Cr(VI), and provide reference for the development of bio-reduction technology of Cr(VI).
Show more [+] Less [-]First polychlorinated biphenyls (PCBs) monitoring in seawater, surface sediments and marine fish communities of the Persian Gulf: Distribution, levels, congener profile and health risk assessment
2019
Ranjbar Jafarabadi, Ali | Riyahi Bakhtiari, Alireza | Mitra, Soumita | Maisano, Maria | Cappello, Tiziana | Jadot, Catherine
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that, due to their high toxicity, lipophilic property and widespread dispersal in the global environment, present a danger for human health and ecological systems. Although the inventory and use of PCBs are extensively reported worldwide, the status of PCBs in Iran is still unknown. In this study, the concentrations of PCBs were determined in the environmental matrices and in five commercially important fish species from Larak coral Island, Persian Gulf, Iran, in winter and summer 2015. A positive correlation was found among PCBs levels and congeners profiles in seawater (0.97–3.10 ng L⁻¹), surface sediments (2.95–7.95 ng g⁻¹dw) and fish samples (7.20–90.19 ng g⁻¹dw), indicating fish as suitable bioindicator of environmental PCBs contamination. In all matrices, a high contribution of light and medium chlorinated congeners was detected in both seasons. In fish, the higher PCBs levels were found for both sexes in both seasons in liver and kidney than other tissues (skin, gonad, muscle) due to their high lipid content and PCBs lipophilicity. More importantly, the risks for human health associated with fish consumption were also evaluated, and it was found that all the toxicity indices measured for PCBs were within the World Health Organization (WHO) permissible limit of food consumption. However, it is highly recommended to inform the local population about potential risks attributable to dietary incorporation of locally caught fish, and establish a surveillance monitoring programme on PCBs in this region.
Show more [+] Less [-]Host bacterial community of MGEs determines the risk of horizontal gene transfer during composting of different animal manures
2019
Zhu, Longji | Zhao, Yue | Yang, Kangjie | Chen, Jian | Zhou, Haixuan | Chen, Xiaomeng | Liu, Qi | Wei, Zimin
Mobile genetic elements (MGEs) play critical roles in transferring antibiotic resistance genes (ARGs) among different microorganisms in the environment. This study aimed to explore the fate of MGEs during chicken manure (CM) and bovine manure (BM) composting to assess horizontal transfer risks of ARGs. The results showed that the removal efficiency of MGEs during CM composting was significantly higher than that during BM composting, because the potential host bacteria of MGEs were eliminated largely during CM composting. Meanwhile, these potential host bacterial communities are significantly influenced by pH, NH4+, NO3− and total N, which can be used to regulate host bacterial communities to remove MGEs during composting. Projection pursuit regression further confirmed that composting can effectively reduce the horizontal transfer risk of ARGs, especially for CM composting. These results identified the critical roles of host bacterial communities in MGEs removal during composting of different animal manures.
Show more [+] Less [-]A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal
2019
Yang, Shanshan | Chen, Yi-di | Zhang, Ye | Zhou, Hui-Min | Ji, Xin-Yu | He, Lei | Xing, De-Feng | Ren, Nan-Qi | Ho, Shih-Hsin | Wu, Weimin
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms’ life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
Show more [+] Less [-]Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa
2019
Wang, Zhenhong | Gui, Herong | Luo, Zhuanxi | Zhen, Zhuo | Yan, Changzhou | Xing, Baoshan
Only limited information is available on the effects of dissolved organic phosphorus (DOP) on arsenate (As(V)) bioaccumulation and biotransformation in organisms. In this study, we examined the influence of three different DOP forms (β-sodium glycerophosphate (βP), adenosine 5′-triphosphate (ATP), and D-Glucose-6-phosphate disodium (GP) salts) and inorganic phosphate (IP) on As(V) toxicity, accumulation, and biotransformation in Microcystis aeruginosa. Results showed that M. aeruginosa utilized the three DOP forms to sustain its growth. At a subcellular level, the higher phosphorus (P) distribution in metal-sensitive fractions (MSF) observed in the IP treatments could explain the comparatively lower toxic stress of algae compared to the DOP treatments. Meanwhile, the higher MSF distribution of arsenic (As) in M. aeruginosa in the presence of DOP could explain the higher toxicity with lower 96-h half maximal effective concentration (EC50) values. Although we observed As(V) and P discrimination in M. aeruginosa under IP treatments with high intracellular P/As, we did not find this discrimination under the DOP treatments. As accumulation in algal cells was therefore greatly enhanced by DOP, especially βP, given its lower transformation rate to phosphate compared to ATP and GP in media. Additionally, As(V) reduction and, subsequently, As(III) methylation were greatly facilitated in M. aeruginosa by the presence of DOP, particularly GP, which was confirmed by the higher relative expression of its two functional genes (arsC and arsM). Our findings indicate that As(V) accumulation and its subsequent biotransformation were enhanced by organic P forms, which provides new insight into how DOP modulates As metabolism in algae.
Show more [+] Less [-]No radioactive contamination from the Chernobyl disaster in Hungarian white truffles (Tuber magnatum)
2019
Büntgen, Ulf | Jaggi, Maya | Egli, Simon | Heule, Martin | Peter, Martina | Zagyva, Imre | Krusic, Paul J. | Zimermann, Stephan | Bagi, Istvan
Despite being one of the most expensive gourmet foods, it remains unclear if the iconic White Truffle (Tuber magnatum Pico; hereinafter WT) accumulates radioactivity at harmful levels comparable to other fungal species. Here, we measure the active radiocaesium-137 concentration (137Cs) in ten hypogeous WT fruitbodies from southern Hungary, and the soils in which they were growing. All WTs reveal non-significant 137Cs values, thus providing an ‘all clear’ for WT hunters in the species' northernmost habitats, where corresponding soil samples occasionally exhibit slight 137Cs concentrations. Our results are particularly relevant in the light of a rapidly increasing global demand for WTs and their subsequent trading extent and price inflation, because up to 600 kg of fresh fruitbodies are harvested each year in southern Hungary. Moreover, some of Europe's forest ecosystems, in which mushroom picking is common practise, are still contaminated with 137Cs from the Chernobyl fallout more than 30 years ago, posing a serious threat to human health.
Show more [+] Less [-]Urinary parabens in children from South China: Implications for human exposure and health risks
2019
Lu, Shaoyou | Ren, Lu | Liu, Yanlin | Ma, Huimin | Liu, Shan | Zhu, Zhou | Tang, Zhi | Kang, Li | Liao, Shicheng
Parabens are extensively applied in cosmetics, drugs or food as preservatives and have become common pollutants in environmental media. However, data on human exposure to these chemicals is still limited, especially for children. This study aimed to investigate parabens in urine samples of children and to evaluate the cumulative risk of paraben exposure. Five short-chain parabens were measured in 255 urine samples collected from children in a kindergarten and elementary schools from South China. Methyl paraben (MeP), ethyl paraben (EtP) and n-propyl paraben (PrP) were widely detected in urine samples (detection rates > 94.9%), indicating their widespread exposure. The urinary median concentrations of MeP, EtP and PrP were 2.25, 0.33 and 0.50 μg/L, respectively. Significantly positive correlations (p < 0.01) were observed between MeP and PrP in urine, suggesting similar sources and/or metabolic pathways of these two chemicals. The median estimated daily intakes (EDIs) of parabens were determined to be 18.1 and 9.79 μg/kg-bw/day for kindergarten children and elementary school students, respectively. Estimation of human intake and exposure risks indicated potential risks of PrP exposure for elementary school students. This is the first study addressing paraben exposure in South China children.
Show more [+] Less [-]Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality
2019
Montiel-Rozas, María del Mar | Hurtado-Navarro, María | Díez-Rojo, Miguel Ángel | Pascual, José A. (José Antonio) | Ros, Margarita
The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account.Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.
Show more [+] Less [-]Estimation of health and economic benefits based on ozone exposure level with high spatial-temporal resolution by fusing satellite and station observations
2019
Liang, Shuang | Li, Xiaoli | Teng, Yu | Fu, Hongchen | Chen, Li | Mao, Jian | Zhang, Hui | Gao, Shuang | Sun, Yanling | Ma, Zhenxing | Azzi, Merched
In recent years, ozone pollution has become more and more serious in China. Several epidemiological studies have demonstrated the correlation between short-term ozone exposure and several health risks including all-cause mortality, cardiovascular mortality, and respiratory mortality. In this study, the daily ozone exposure levels with 10 km × 10 km resolution were estimated based on satellite data derived from Ozone Monitoring Instrument (OMI) and the monitoring data. The health impacts for potential decrease in the daily ozone concentration and the corresponding economic benefits in 2016 were estimated by applying the environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) model. By reducing the daily maximum 8-h average concentration of ozone to 100 μg/m³, the estimated avoided all-cause mortalities were 120 × 10³ (95% confidence interval (CI): 67 × 10³, 160 × 10³) cases and the correspondingly economic benefits ranged from 36 to 64 billion CNY using amended human capital (AHC) and willingness to pay (WTP) method in 2016. If the daily maximum 8-h average concentration of ozone were rolled back to 70 μg/m³, the estimated avoided all-cause mortalities were 160 × 10³ (95% CI: 98 × 10³, 230 × 10³) cases and economic benefits ranged from 54 to 95 billion CNY based on AHC and WTP methods.
Show more [+] Less [-]Rethinking hydrocarbons build-up on urban roads: A perspective on volatilisation under global warming scenarios
2019
Wijesiri, Buddhi | Liu, An | Hong, Nian | Zhu, Panfeng | Yang, Bo | Zhao, Xu | Goonetilleke, Ashantha
Stormwater is viewed as an alternative resource to mitigate water shortages. However, stormwater reuse is constrained due to the presence of many toxic pollutants such as hydrocarbons. Effective mitigation requires robust mathematical models for stormwater quality prediction based on an understanding of pollutant processes. However, the rise in global temperatures will impose changes to pollutant processes. This study has proposed a new perspective on modelling the build-up process of hydrocarbons, with a focus on volatile organic compounds (VOCs). Among organic compounds, VOCs are the most susceptible to changes as a result of global warming due to their volatility. Seven VOCs, namely, benzene, toluene, ethylbenzene, para-xylene, meta-xylene, ortho-xylene and styrene in road dust were investigated. The outcomes are expected to lay the foundation to overcoming the limitations in current modelling approaches such as not considering the influence of temperature and volatility, on the build-up process. A new conceptualisation is proposed for the classical build-up model by mathematically defining the volatility of VOCs in terms of temperature. Uncertainty in the re-conceptualised build-up model was quantified and was used to understand the build-up patterns in the future scenarios of global warming. Results indicated that for the likely scenarios, the variability in VOCs build-up gradually increases at the beginning of the dry period and then rapidly increases after around seven days, while the build-up reaches a near-constant value in a shorter dry period, limiting the variability. These initial research outcomes need to be further investigated given the expected impacts of global warming into the future.
Show more [+] Less [-]