Refine search
Results 2101-2110 of 2,512
Performance evaluation of a continuous flow photocatalytic reactor for wastewater treatment Full text
2014
Rezaei, Mohammad | rashidi, Fariborz | Royaee, Sayed Javid | Jafarikojour, Morteza
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO₂. A simple method was employed for TiO₂ immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7 × 10⁻⁵ m³.s⁻¹, while the flow rate of feed was 2.53 × 10⁻⁷, 7.56 × 10⁻⁷, and 1.26 × 10⁻⁶ m³.s⁻¹, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53 × 10⁻⁷−1.26 × 10⁻⁶ m³.s⁻¹), and TiO₂ loading (8.8–17.6 g.m⁻²) were analyzed with this method. The adjusted R ² value (0.9936) was in close agreement with that of corresponding R ² value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH ∼ 6.41, and flow rate of 2.53 × 10⁻⁷ m³.s⁻¹ and catalyst loading of 17.6 g.m⁻²). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO₂ nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO₂ was 47.2 and 45.8 m² g⁻¹ before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH ∼ 6).
Show more [+] Less [-]Potential of biological materials for removing heavy metals from wastewater Full text
2014
Dhir, Bhupinder
Agricultural products/by-products are natural sorbent materials that possess capacity for removing contaminants including heavy metals from wastewaters and hence can be exploited as replacement of costly methods for wastewater treatment. The sorption of heavy metals onto these biomaterials is attributed to constituent's proteins, carbohydrates, and phenolic compounds that contain functional groups such as carboxylate, hydroxyl, and amine. Natural efficiency of these materials for removing heavy metals can be enhanced by treating them with chemicals. The present review emphasizes their use in developing eco-friendly technology for a large-scale treatment of wastewater.
Show more [+] Less [-]Seeds’ physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis) Full text
2014
Alves Silva, Giovanni Eustáquio | Toledo Ramos, Flávia | de Faria, Ana Paula | Costa França, Marcel Giovanni
We determined the length, volume, dry biomass, and density in seeds of five castor bean cultivars and verified notable physicochemical trait differences. Seeds were then subjected to different toxic aluminum (Al) concentrations to evaluate germination, relative root elongation, and the role of root apices’ rhizosphere mucilage layer. Seeds’ physicochemical traits were associated with Al toxicity responses, and the absence of Al in cotyledons near to the embryo was revealed by Al-hematoxylin staining, indicating that Al did not induce significant germination reduction rates between cultivars. However, in the more sensitive cultivar, Al was found around the embryo, contributing to subsequent growth inhibition. After this, to investigate the role of mucilage in Al tolerance, an assay was conducted using NH₄Cl to remove root mucilage before or after exposure to different Al concentrations. Sequentially, the roots were stained with hematoxylin and a quantitative analysis of staining intensity was obtained. These results revealed the significant contribution of the mucilage layer to Al toxicity responses in castor bean seedlings. Root growth elongation under Al toxicity confirmed the role of the mucilage layer, which jointly indicated the differential Al tolerance between cultivars and an efficient Al-exclusion mechanism in the tolerant cultivar.
Show more [+] Less [-]Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites Full text
2014
Kolekar, Parag D. | Phugare, Swapnil S. | Jadhav, Jyoti P.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.
Show more [+] Less [-]Inhibition equivalency factors for microcystin variants in recombinant and wild-type protein phosphatase 1 and 2A assays Full text
2014
Garibo, Diana | Flores, Cintia | Cetó, Xavier | Prieto-Simón, Beatriz | Valle, Manel del | Caixach, Josep | Diogène, Jorge | Campàs, Monica
In this work, protein phosphatase inhibition assays (PPIAs) have been used to evaluate the performance of recombinant PP1 and recombinant and wild-type PP2As. The enzymes have been compared using microcystins-LR (MC-LR) as a model cyanotoxin. Whereas PP2ARₑcprovides a limit of detection (LOD) of 3.1 μg/L, PP1Rₑcand PP2AWᵢₗdprovide LODs of 0.6 and 0.5 μg/L, respectively, lower than the guideline value proposed by the World Health Organization (1 μg/L). The inhibitory potencies of seven MC variants (-LR, -RR, -dmLR, -YR, -LY, -LW and -LF) have been evaluated, resulting on 50 % inhibition coefficient (IC₅₀) values ranging from 1.4 to 359.3 μg/L depending on the MC variant and the PP. The PPIAs have been applied to the determination of MC equivalent contents in a natural cyanobacterial bloom and an artificially contaminated sample, with multi-MC profiles. The inhibition equivalency factors (IEFs) have been applied to the individual MC quantifications determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the estimated MC-LR equivalent content has been compared to PPIA results. PPIAs have demonstrated to be applicable as MC screening tools for environmental applications and to protect human and animal health.
Show more [+] Less [-]Two organobromines trigger lifespan, growth, reproductive and transcriptional changes in Caenorhabditis elegans Full text
2014
Saul, Nadine | Baberschke, Nora | Chakrabarti, Shumon | Stürzenbaum, Stephen R. | Lieke, Thora | Menzel, Ralph | Jonas, Adam | Steinberg, Christian E. W.
Organobromines of natural and artificial origin are omnipresent in aquatic and terrestrial environments. Although it is well established that exposure to high concentrations of organobromines are harmful to vertebrates, few studies have investigated the effect of environmentally realistic concentrations on invertebrates. Here, the nematode Caenorhabditis elegans was challenged with two organobromines, namely dibromoacetic acid (DBAA) and tetrabromobisphenol-A (TBBP), and monitored for changes in different life trait variables and global gene expression patterns. Fifty micromolar DBAA stimulated the growth and lifespan of the nematodes; however, the onset of reproduction was delayed. In contrast, TBBP changed the lifespan in a hormetic fashion, namely it was stimulated at 0.1 μM but impaired at 50 μM. The reproductive performance was even impaired at 2 μM TBBP. Moreover, DBAA could not reduce the toxic effect of TBBP when applied as a mixture. A whole-genome DNA microarray revealed that both organobromines curtailed signalling and neurological processes. Furthermore on the transcription level, 50 μM TBBP induced proteolysis and DBAA up-regulated biosynthesis and metabolism. To conclude, even naturally occurring concentrations of organobromines can influence the biomolecular responses and life cycle traits in C. elegans. The life extension is accompanied by negative changes in the reproductive behaviour, which is crucial for the stability of populations. Thus, this paper highlights that the effects of exposure to moderate, environmentally realistic concentrations of organobromines should not be ignored.
Show more [+] Less [-]Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification Full text
2014
Almeida, C. Marisa R. | Mucha, Ana P. | da Silva, Marta Nunes | Monteiro, Maria | Salgado, Paula | Necrasov, Tatiana | Magalhães, Catarina
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N₂. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd²⁺saline solution, nine vessels were doped with 2 mg/L Cd²⁺saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N₂O emissions and on N₂O/N₂ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N₂O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.
Show more [+] Less [-]The effects of henna (hair dye) on the embryonic development of zebrafish (Danio rerio) Full text
2014
Manjunatha, Bangeppagari | Wei-bing, Peng | Ke-chun, Liu | Marigoudar, Shambanagouda R. | Xi-qiang, Chen | Xi-min, Wang | Xue, Wang
The powder of henna is extensively used as decorative skin paint for nail coloring and as a popular hair dye in Asian countries. Its human health risk is extensive, and it is frequently released as waste into the aquatic environment raising the concerns. Zebrafish (Danio rerio) embryos were employed to study the developmental effects of henna. Normal fertilized zebrafish embryos under standard water were selected for the control and test chambers. Three predetermined sublethal concentrations (100, 200, and 275 μM) of henna in 24-well cell culture plates were tested on 1-h postfertilized embryo (pfe) for 96 h. Observation for rates of survival and mortality was recorded; digital camera was used to image morphological anomalies of embryos with a stereomicroscope; and functional abnormalities at 24, 48, 72, and 96 h were performed. The hatching rates of embryos were reduced significantly when treated with 200 and 275 μM or higher concentrations of henna. Slow blood circulation in the whole body was observed with a median effect on hatching exposed to 200 and 275 μM of henna at 48-h pfe. At 72- and 96-h pfe, blood circulation was ceased in the whole body but still had a heartbeat. At 96-h pfe, pericardial sac edema, yolk sac edema, head deformation, spine crooked malformation, and tail malformation (bent tails or hook-like tails) were observed in the surviving larvae at 100 μM. In summary, exposure to henna at 100, 200, and 275 μM causes some altered morphological and physiological abnormalities including increased mortality, hatching delay, slow blood circulation, pericardial sac edema, yolk sac edema, abnormal body axes, twisted notochord, tail deformation, weak heartbeat, and growth retardation and was also detected in some treated embryos and groups having adverse effects on embryonic development of zebrafish provoking potential human developmental risk studies.
Show more [+] Less [-]1H-NMR-based profiling of organic components in leachate from animal carcasses disposal site with time Full text
2014
Kwon, Yong-Kook | Bae, Hyun-Whee | Shin, Sun Kyoung | Jeon, Tae-Wan | Seo, Jungju | Hwang, Geum-Sook
Leachate, generated by the decomposition of animal carcasses, presents many environmental, sanitary, and food safety hazards. However, research on the characteristics of leachate is lacking. In this study, we performed biochemical profiling of leachate from two animal species (pig and cattle) in two soil types (sandy loam and sandy soil) using¹H-NMR-based profiling, followed by multivariate data analysis. The leachate was collected from a well-controlled artificial burial site over a 31-week period. Principal components analysis (PCA) of the NMR data showed similar patterns between species and soil types. Organic components, including organic acids and phenols, predominated, and their levels increased with time. The methylamine level in leachate from pig carcasses 18 weeks following burial was significantly higher than that from cattle carcasses; leachate from cattle carcasses in sandy soil 1 week after burial contained unique components (specifically ethanol, formate, alanine, N-methylation, and taurine), in contrast with those from sandy loam soil. This study suggests that a NMR-based profiling approach is useful to characterize the organic components in leachate from animal carcasses over time.
Show more [+] Less [-]Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves Full text
2014
Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves Full text
2014
Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO₂) and trace (CH₄) gases and isotopic signal of CO₂(δ¹³C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.
Show more [+] Less [-]Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves Full text
2014
García Antón, Elena | Cuezva, Soledad | Jurado, Valme | Porca, Estefanía | Miller, A. Z. | Fernández Cortés, Ángel | Sáiz-Jiménez, Cesáreo | Sánchez-Moral, Sergio
Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO 2 (δ13C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the inner-most and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management. | Peer Reviewed
Show more [+] Less [-]