Refine search
Results 2171-2180 of 4,935
Inhibiting effects of flue gas desulfurization gypsum on soil phosphorus loss in Chongming Dongtan, southeastern China Full text
2019
Kun, He | Xiaoping, Li
To explore the possibility of using flue gas desulfurization gypsum (FGDG) for inhibiting phosphorus (P) loss due to agricultural runoff, a 3-year study was performed in the farmlands of Chongming Dongtan between 2012 and 2015. Five different quantities of FGDG were used to treat the soil, and the effects of different treatments on the characteristics of soil P and crop growth were investigated. The results showed that 2 years after application of FGDG, the soil density at a depth of 0–10 cm decreased by 4.35–7.97%, the porosity increased by 1.77–11.0%, and the topsoil permeability increased by 0.87–3.81 times. Although the use of FGDG did not change the total P concentration in the soil, it decreased the concentration of sodium bicarbonate extractable P in the soil. Compared to the control, the average extractable P concentration at depths of 0–10 cm, 10–20 cm, and 20–30 cm decreased by 22.0–46.1%, 26.9–40.5%, and 22.8–34.8%, respectively. The inorganic P in the soil increased as the amount of FGDG increased, and the increase was mainly as Ca–P in the forms Ca₂–P and Ca₁₀–P. The decrease in bicarbonate extractable P and increase in inorganic P in the soil did not affect the growth of the crops, and the biomass and output of the crops increased compared to the control. Therefore, FGDG can enhance soil P immobilization, thus reducing soluble P runoff from farm fields, and improving water quality in receiving lakes and rivers while maintaining P nutrition to the crops.
Show more [+] Less [-]Removal of Agrichemicals from Water Using Granular Activated Carbon Filtration Full text
2019
Grant, George A. | Fisher, Paul R. | Barrett, James E. | Wilson, Patrick C.
The objective was to evaluate removal efficacy of agrichemicals from water using a small-scale granular activated carbon (GAC) system. The GAC system consisted of a series of three 1.9- to 4.1-L filter canisters filled with 8 × 30 US mesh (595 to 2380 μm) bituminous coal GAC. In experiment 1, 11 agrichemicals (acephate, bifenthrin, chlorpyrifos, flurprimidol, glyphosate, hydrogen peroxide + peracetic acid, imidacloprid, paclobutrazol, didecyldimethylammonium chloride (DDAC), triclopyr, and uniconazole) used in greenhouse and nursery production were exposed to 0, 12, or 64 s of GAC contact time. Chemical concentrations were prepared at a 1:10 dilution of a recommended label rate for ornamental crops to represent a possible residual concentration found in recaptured irrigation or surface water. In experiment 2, three other chemicals [iron ethylene diamine-N,N′-bis(hydroxy phenyl acetic acid) (iron-EDDHA, a chelated iron fertilizer), soracid blue dye (a fertilizer dye), and sodium hypochlorite (a sanitizing agent)] were also tested with 0, 12, 38, or 64 s of GAC contact time. Agrichemical concentration was reduced with 12 s of GAC contact time compared with the 0 s for all chemicals tested, and in most cases was further increased at 64-s contact time. Chemicals reduced below their minimum detection limits with 64 s GAC included acephate, flurprimidol, paclobutrazol, uniconazole, peracetic acid, DDAC, and chlorine (free and total). Percent reduction for other chemicals with 64 s GAC was 72.2% for bifenthrin, 89% chlorphyrifos, 85.3% imidacloprid, 99% glyphosate, 99.4% triclopyr, 99.3% hydrogen peroxide, 47.6% iron-EDDHA, and 94.6% soracid blue dye. Iron-EDDHA and soracid blue dye could be used as indicator chemicals for onsite monitoring of GAC filter efficacy. Results indicate that GAC filtration can remove a wide range of agrichemical contaminants commonly used in greenhouse and nursery production, although the required contact time in commercial production is expected to be greater than in this research study.
Show more [+] Less [-]Effluent from Citrus Industry: Toxic Parameters of Orange Vinasse Full text
2019
Garcia, Camila Fernandes H. | de Souza, Raphael B. | de Souza, Cleiton Pereira | Fontanetti, Carmem Silvia
Brazil is one of the greatest producers of orange and its orange juice processing industry produces large volumes of solid and liquid waste daily. As an efficient use of the residues from citrus industry, production of bioethanol is highlighted. However, the generation of bioethanol produces a liquid effluent as a by-product, known as vinasse. The objective of this study was to evaluate the toxicity of an effluent from citrus industries, orange vinasse, when applied to soil using Allium cepa seeds. The evaluation was performed by means of germination, root growth, and genotoxic and mutagenic parameters. The EC₅₀ (effectiveness concentration) and ½ EC₅₀, defined in the germination test, were used for genotoxicity tests. Toxicity was observed in dilutions above 40%, which was responsible for reducing the germination speed index. Genotoxicity was observed only using the EC₅₀ and mutagenicity was not detected. According to the results, orange vinasse showed toxicity similar to the sugar cane vinasse, so caution is suggested in the disposal of this effluent into the environment.
Show more [+] Less [-]Antimony Causes Mortality and Induces Mutagenesis in the Soil Functional Bacterium Azospirillum brasilense Sp7 Full text
2019
Obiakor, Maximilian Obinna | Wilson, Susan C. | Tighe, Matthew | Pereg, Lily
Antimony (Sb) is increasing in the environment but effects of exposure in ecosystems are not well understood. The aim of this work was to examine effects of antimony exposure on the multifunctional, plant growth promoting, ubiquitous soil bacterium Azospirillum brasilense Sp7. Contaminated mine water with high Sb concentrations (0.13 ± 0.09 mg L⁻¹) was lethal to A. brasilense Sp7 in laboratory experiments. Exposure-dose- and time-dependent incubation toxicity assays on A. brasilense Sp7 with Sb(III) and Sb(V) at different concentrations (0.05–5 mg L⁻¹) also resulted in cell mortality which was dose and time dependent. Median effect concentrations of 0.004–0.049 and 0.019–0.467 mg L⁻¹ were estimated for Sb(III) and Sb(V), respectively. Exposure to Sb(III) resulted in greater cell mortality than Sb(V) at all concentrations tested. Exposure also resulted in the emergence of phenotypic variants that were more frequent with exposure to Sb(III). The toxicity assays demonstrated that Sb alone could have been responsible for the mortality observed with exposure to the contaminated mine water even without any other contaminants present. A. brasilense Sp7 was highly sensitive to Sb exposure and the observed effects suggest possible consequences for microbial function, plant-bacterial symbioses and ecosystem health with Sb contamination.
Show more [+] Less [-]Seasonality of E. coli and Enterococci Concentrations in Creek Water, Sediment, and Periphyton Full text
2019
Stocker, Matthew Daniel | Smith, Jaclyn Elizabeth | Hernández, César | Macarisin, Dumitru | Pachepsky, Yakov
Environmental reservoirs of fecal indicator bacteria (FIB) are attracting increasing attention because of the ambiguity they present when assessing the microbial quality of water. FIB can survive and even grow in various environmental reservoirs which means FIB measured in the water column may not have originated directly from a fecal source. Sediment and periphyton, i.e., aquatic biofilms growing on submerged rocks, have been shown to harbor large populations of FIB in the environment. However, little is known about the spatial and temporal dynamics of FIB in periphyton. The objective of this work was to determine levels of the common FIB, Escherichia coli and enterococci, in creek water, sediment, and periphyton during the summer and winter. FIB were measured during two summer and winter sampling dates at five locations along a 2.8-km stretch of creek in Beltsville, Maryland. Significant differences in FIB by location were only observed for E. coli in water at one time point. Levels of FIB significantly declined from summer to winter in all media. FIB concentrations in periphyton ranged from 10² to 10⁴ gdw⁻¹ in the summer and from 10⁰ to 10⁴ CFU gdw⁻¹ in the winter. When compared on a dry weight basis, periphyton contained higher concentrations of FIB than the sediment. Variability of FIB was in the order of water < sediment < periphyton. Levels of E. coli and enterococci measured in the same sample showed significant positive correlation in all media (rₛ = 0.87, 0.48, 0.70, for water, sediment, and periphyton, respectively). Results from this work show that fecal bacteria can persist in creek periphyton which may act as both a reservoir for fecal pathogens as well as a probable source of fecal bacteria to the water column.
Show more [+] Less [-]Pesticide Dissipation and Enzyme Activities in Ungrassed and Grassed Biomixtures, Composed of Winery Wastes, Used in Biobed Bioremediation Systems Full text
2019
Romero, Esperanza | Delgado-Moreno, Laura | Nogales, Rogelio
The biomixture composition and the presence of a grass layer in a biobed bioremediation system can improve the performance of these systems to minimize pesticide point-source contamination. In this study, a novel biomixture composed with organic wastes from vineyards and wine industries (vermicompost of winery wastes and vine shoots) and top soil (W) was elaborated. The impact of three pesticides, commonly used in vineyards, on its microbial activity and on the development of turfgrass was determined in a short-term experiment. Moreover, the dissipation of the assayed pesticides was evaluated to stablish their distribution patterns between the turfgrass and the biomixture. For comparison, the original biomixture composed with top soil, peat, and straw (P) was also studied. After 15 days of pesticide application, the development of the turfgrass in both biomixtures was similar. However, the oxidoreductases (dehydrogenase and ortho-diphenol oxidase) and the hydrolytic (FDA and β-glucosidase) enzyme activities were greater in W-biomixture than in P-biomixture. The dissipation of metalaxyl and imidacloprid recorded in the W-biomixtures was significantly greater than in the P-biomixtures. The pesticide dissipation in W-biomixtures followed the same order of their octanol water partition coefficients. Except for tebuconazole, the lower biological activity in the P-biomixture would explain the limited pesticide dissipation. In the grassed biomixtures, most (> 83%) of the non-dissipated imidacloprid and tebuconazole remained in the biomixtures, while metalaxyl was rapidly translocated to the aerial part of the turfgrass. Our results show the potential capability of the novel biomixture as an alternative to the original one in a biobed.
Show more [+] Less [-]Chemophysical Evaluation of Green Sorption Media for Copper Removal in Stormwater Runoff for Improving Ecosystem and Human Health Full text
2019
Valencia, Andrea | Kilner, Jamie | Chang, Ni-Bin | Wanielista, Martin P.
Green sorption media, which includes the utilization of renewable and recycled materials, can be used as a means for nutrient and copper removal in various low-impact development facilities. In this study, a green sorption media mixture consisting of recycled tire chip, expanded clay, and coconut coir was physiochemically evaluated for copper removal potential in stormwater runoff to deepen the understanding of its application potential. Isotherm, reaction kinetics, and life expectancy tests were conducted using both the media mixture and the individual components of the green sorption media. In addition, the media mixture was analyzed to determine its life expectancy. Isotherm test results revealed that the media mixture follows the Freundlich model and that the coconut coir had the highest affinity for copper. Distinct dynamic adsorption models were explored to determine the most suitable model for implementation based on a column test data set. Five dynamic adsorption models, including the Thomas, Clark, Bohart-Adams, Wolborska, and modified dose-response models, were investigated and the media mixture data collected in the column test were fitted into these five models, leading to the selection of the best model with the highest correlation. The modified dose-response model outperformed others in terms of the overall media mixture and the coconut coir. Life expectancy estimation showed that the media mixture has a life span of 2.13 years with the chosen influent conditions and can be applicable for improving the performance of water quality management in stormwater detention and retention ponds, bioswale, and other stormwater best management practices.
Show more [+] Less [-]Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations Full text
2019
Lastre-Acosta, Arlen Mabel | Barberato, Bruna | Parizi, Marcela Prado Silva | Teixeira, Antonio Carlos Silva Costa
The purpose of this study was to investigate the aqueous phase photochemical behavior of enoxacin (ENO), an antibiotic selected as a model pollutant of emerging concern. The second-order reaction rate constants of ENO with hydroxyl radicals (HO●) and singlet oxygen (¹O₂) were determined at pH 3, 7, and 9. Also, the rate constants of the electron transfer reaction between ENO and triplet states of chromophoric dissolved organic matter (³CDOM*) are reported for the first time, based on anthraquinone-2-sulfonate (AQ2S) as CDOM proxy. The sunlight-driven direct and indirect ENO degradation in the presence of dissolved organic matter (DOM) is also discussed. The results show that direct photolysis, which occurs more rapidly at higher pH, along with the reactions with HO● and ³AQ2S*, is the key pathway involved in ENO degradation. The ENO zwitterions, prevailing at pH 7, show kENO, HO●, kENO,₁O₂, and kENO,₃AQ₂S* of (14.0 ± 0.8) × 10¹⁰, (3.9 ± 0.2) × 10⁶, and (61.5 ± 0.7) × 10⁸ L mol⁻¹ s⁻¹, respectively, whose differences at pH 3, 7, and 9 are due to ENO pH-dependent speciation and reactivity. These k values, along with the experimental ENO photolysis quantum yield, were used in mathematical simulations for predicting ENO persistence in sunlit natural waters. According to the simulations, dissolved organic matter and water depth are expected to have the highest impacts on ENO half-life, varying from a few hours to days in summertime, depending on the concentrations of relevant waterborne species (organic matter, NO₃⁻, NO₂⁻, HCO₃⁻).
Show more [+] Less [-]Amendment of Caulerpa sertularioides marine alga with sulfur-containing materials to accelerate Cu removal from aqueous media Full text
2019
Ramavandi, Bahman | Dobaradaran, Sina | Papari, Fatemeh | Sorial, George A. | Ebrahimi, Ahmad | Khaksar, Leila Madeh | Akbarzadeh, Samad | Hashemi, Seyedenayat | Teimori, Fatemeh
This study reports a new approach of alga amendment in a live mode. The Caulerpa sertularioides alga was modified with sulfur-containing materials of methionine (C₅H₁₁NO₂S) and sodium sulfate (Na₂SO₄) to more concentrate the sulfur content of the yielded biomass (adsorbent). The simple and amended C. sertularioides alga was fully characterized with FTIR, SEM, EDX, BET, BJH, and pHzₚc techniques. The copper adsorption from aqueous media was done by three adsorbents of C. sertularioides-simple (CSS), C. sertularioides-Na₂SO₄ (CSN), and C. sertularioides-C₅H₁₁NO₂S (CSC). The parameters of pH (2–6), adsorbent dosage (2–10 g/L), and contact time (3–80 min) were optimized at 5, 5 g/L, and 60 min, respectively. According to Langmuir isotherm (the best-fitted model), the maximum adsorption capacity of CSN (98.04 mg/g) was obtained 2.4 times higher than CSC (40.73 mg/g) and 9.5 times higher than CSS (10.29 mg/g). The Cu adsorption process by the adsorbents was best-fitted pseudo-second-order kinetic model. The CSN, CSC, and CSS biomasses were successfully reused 5, 4, and 4 times, respectively. The thermodynamic study revealed that the copper adsorption process by CSN is exothermic and non-spontaneous. Finally, the suitability of adsorbents prepared from algae was tested by cleaning a simulated wastewater.
Show more [+] Less [-]Occurrences and patterns of residual organochlorine pesticides (OCPs) in cultured Chinese mitten crab (Eriocheir sinensis) in China: concentrations, sources, and a human health risk assessment Full text
2019
Song, Chao | Zhang, Cong | Zhang, Jingwei | Zhang, Xiaowei
Seventy Chinese mitten crab samples, encompassing a total of 2100 individuals, were collected from the main production areas in China. The objective was to assess the occurrences and patterns of 23 selected organochlorine pesticides (OCPs) in the edible tissues and assess the associated dietary risk. Concentrations of total residual OCPs in the mitten crabs ranged from 0.72 to 51.51 μg kg⁻¹, which was comparable to other global aquatic species. Dichlorodiphenyl trichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) were the two main contributors of total OCPs, with the detected values ranging from 0.14 to 30.89 μg kg⁻¹ and 0.23 to 4.04 μg kg⁻¹, respectively. Source analysis indicated the coexistence of both residual and recent DDT inputs, while there was no indication of HCH usage in the main production area of mitten crab. In terms of dietary risk, at least eight individual mitten crabs per day are permissible for consumption by local residents, indicating low risk from consumption. The results presented herein should guide the production and consumption of mitten crab, as well as promote the sustainable development of aquaculture in China.
Show more [+] Less [-]