Refine search
Results 221-230 of 7,921
Tracing the fate of phosphorus fertilizer derived cadmium in soil-fertilizer-wheat systems using enriched stable isotope labeling
2021
Bracher, Christoph | Frossard, Emmanuel | Bigalke, Moritz | Imseng, Martin | Mayer, J. (Jochen) | Wiggenhauser, Matthias
Applying mineral phosphorus (P) fertilizers introduces a considerable input of the toxic heavy metal cadmium (Cd) into arable soils. This study investigates the fate of P fertilizer derived Cd (Cddff) in soil-wheat systems using a novel combination of enriched stable Cd isotope mass balances, sequential extractions, and Bayesian isotope mixing models. We applied an enriched ¹¹¹Cd labeled mineral P fertilizer to arable soils from two long-term field trials with distinct soil properties (a strongly acidic pH and a neutral pH) and distinct past mineral P fertilizer application rates. We then cultivated wheat in a pot trial on these two soils. In the neutral soil, Cd concentrations in the soil and the wheat increased with increasing past mineral P fertilizer application rates. This was not the case in the strongly acidic soil. Less than 2.3% of freshly applied Cddff was taken up by the whole wheat plant. Most of the Cddff remained in the soil and was predominantly (>95% of freshly applied Cddff) partitioned into the easily mobilizable acetic acid soluble fraction (F1) and the potentially mobile reducible fraction (F2). Soil pH was the determining factor for the partitioning of Cddff into F1, as revealed through a recovery of about 40% of freshly applied Cddff in F1 in the neutral pH soil compared with about 60% in the strongly acidic soil. Isotope mixing models showed that F1 was the predominant source of Cd for wheat on both soils and that it contributed to over 80% of the Cd that was taken up by wheat. By tracing the fate of Cddff in entire soil-plant systems using different isotope source tracing approaches, we show that the majority of Cddff remains mobilizable and is potentially plant available in the subsequent crop cycle.
Show more [+] Less [-]The involvement of DRP1-mediated caspase-1 activation in inflammatory response by urban particulate matter in EA.hy926 human vascular endothelial cells
2021
Wang, Yan | Xiong, Lilin | Yao, Yongshuai | Ma, Ying | Liu, Qing | Pang, Yanting | Tang, Meng
Atmospheric particulate matter (PM) has been reported to be closely related to cardiovascular adverse events. However, the underlying mode of action remains to be elucidated. Previous studies have documented that PM induces mitochondrial damage and inflammation, the relation between these two biological outcomes is still unclear though. In this study, we used EA.hy926 human vascular endothelial cells and a standard PM, PM SRM1648a to study the potential effects of mitochondrial dysfunction on endothelial inflammatory responses. As a result, PM SRM1648a changes mitochondrial morphology and interrupts mitochondrial dynamics with a persistent tendency of fission in a dose-dependent manner. Additionally, the caspase-1/IL-1β axis is involved in inflammatory responses but not cell pyroptosis in EA.hy926 cells following the exposure to PM SRM1648a. The activation of caspase-1 has implications in inflammation but not pyroptosis, because caspase-1-dependent pyroptosis is not the main modality of cell death in PM SRM1648a-treated EA.hy926 cells. With regard to the association between mitochondrial damage and inflammation in the case of particle stimulation, DRP1-mediated mitochondrial fission is responsible for inflammatory responses as a result of caspase-1 activation. The current study showed that PM SRM1648a has the ability to disturb mitochondrial dynamics, and trigger endothelial inflammation via DRP1/caspase-1/IL-1β regulatory pathway. In a conclusion, mitochondrial fission enables EA.hy926 cells to facilitate caspase-1 activation in response to PM SRM1648a, which is a crucial step for inflammatory reaction in vascular endothelial cells.
Show more [+] Less [-]Water-induced release of recalcitrant polycyclic aromatic hydrocarbons from soil organic matter during microwave-assisted solvent extraction
2021
Wang, Wei | Zhang, Yanyan | Du, Wei | Tao, Shu
Polycyclic aromatic hydrocarbons (PAHs) in soil can be recalcitrant to solvent extraction after aging. We showed in this study that mixing a small amount of water in the extracting solvent during microwave-assisted extraction (MAE) can release recalcitrant PAHs, resulting in significant improvement in the analyzed concentrations. The improvement factor (F) for the total of 16 priority PAHs (∑PAH16) listed by the United States Environmental Protection Agency was 1.44–1.55 for field soils. By comparing the F values for different soil organic components, we demonstrated that the recalcitrant PAHs were primarily associated with biochar, humic acid (HA), and humin (HM), with the F values for ∑PAH16 of 1.94, 6.62, and 4.59, respectively. The results showed that the recalcitrant PAHs comprised a sequestered fraction and a desorption-limited fraction. NMR spectra showed that water worked alone at elevated temperature to promote hydrolysis of biochar and destroy the macromolecular structure, thus causing the release of the otherwise sequestered PAHs during MAE. The substantial reduction in F values for HA and HM after demineralization indicated sequestration of PAHs in organic-mineral complexes, which can be destroyed by hot water treatment. The release of the sequestered fraction was nonselective and independent of compound hydrophobicity. In comparison, the release of the desorption-limited fraction was positively affected by the hydrophobicity of PAHs and was facilitated by the presence of water in the extracting solvent. The results of this study provide important insights into the sequestration and release of recalcitrant PAHs in soil.
Show more [+] Less [-]Bioremediation of ossein effluents using the filamentous marine cyanobacterium Cylindrospermum stagnale
2021
Ameen, Fuad | Al-Homaidan, Ali A. | Alsamhary, Khawla | Al-Enazi, Nouf M. | AlNadhari, Saleh
Wastewater containg proteinaceous ossein effluents are problematic to be treated. We studied the possibility to treat ossein effluents with the marine cyanobacterium strain Cylindrospermum stagnale. After optimizing the culture conditions of the bacterium, three different types of ossein effluents were tested: dicalcium phosphate (DCP), high total dissolved solids (HTDS) and low total dissolved (LTDS). The effluents were diluted with sea water at the following ratios 1:1, 2:1 and 3:2. The optimum operating conditions were at 3000 lux light intensity and 37 °C temperature. The highest degradation of ossein effluens by C. stagnale was attained for a dilution ratio of 1:1. However, less diluted ossein effluents reduced the growth of C. stagnale drastically. The degradation was shown by measuring the chlorophyll a content and the dry weight of bacterial cells during a seven-day incubation period degradation. Fourier Transform Infrared Spectroscopy (FT-IR) analysis verified the degradation showing the presence of the degradation products of ossein (i.e. calcium carbonate and calcite) in the culture medium. Lipid composition in fatty acids appeared to be suitable for biofuel production. The results showed that the marine cyanobacterium C. stagnale can be used to treat ossein effluents, and at the same time, to produce biofuel in a sustainable way.
Show more [+] Less [-]Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river
2021
Kameda, Yutaka | Yamada, Naofumi | Fujita, Emiko
There is increasing concern about the environmental behaviors of microplastics (MPs), in particular fine MPs (FMPs), such as their concentrations, sources, size distributions, and fragmentation by weathering in waters. However, there is little information about size distributions of MP polymer types and their relationships to their sources. Here, we analyzed concentrations, compositions, and size distributions of 18 polymer types of MPs of >20 μm by micro-Fourier transform infrared spectroscopy with a novel pretreatment method in surface waters at five sites from the headwaters to the mouth of a Japanese river, and in influent and effluent from a sewage treatment plant (STP). The microplastic concentrations ranged from 300 to 1240 particles/m³ in surface waters. Cluster analysis identified two primary sources of MPs: residential wastewater at the headwater site and non-point sources from urban areas at downstream sites; concentrations of chemical contaminants from STPs were much higher at the downstream sites. The median particle sizes (D₅₀) of MPs increased in urban areas at the downstream sites and were larger than those in influent and effluent. These results imply the release of larger MPs from non-point sources in urban areas. The size distributions of each polymer and all MPs could be fitted significantly to the Weibull distribution function. Values of D₅₀, shape parameters, and scale parameters estimated from the functions were useful indicators for evaluating size distributions in detail. A significant positive correlation of D₅₀ with the tensile strengths of virgin polymers among 13 dominant polymers detected in the surface water suggests that the fragmentation properties of each polymer are influenced by its physical strength. Multidimensional analysis with concentrations, polymeric compositions, and size distributions of MPs, including FMPs, could provide useful information about their sources and their environmental behaviors.
Show more [+] Less [-]Optimized approach for developing soil fugitive dust emission inventory in "2+26" Chinese cities
2021
Li, Tingkun | Bi, Xiaohui | Dai, Qili | Wu, Jianhui | Zhang, Yufen | Feng, Yinchang
Based on the wind erosion equation and the use of moderate resolution imaging spectroradiometer (MODIS) satellite remote sensing data combined with parameter normalization processing, an optimized high spatial-temporal resolution soil fugitive dust (SFD) emission inventory compiling method was proposed in this study. The "2 + 26" cities in northern China, where heavy pollution frequently occurs, were used as a case study. Using the optimized method, we estimated that the PM₅₀, PM₁₀, and PM₂.₅ emissions from SFD of "2 + 26" cities in 2018 were 2,014,927, 1,007,463, and 151,120 tons, respectively. The dust emissions and emission factors of each city presented significant differences and were generally of a greater level in high-latitude areas (such as cities in Hebei Province) than in low-latitude areas (such as cities in Henan and Shandong Province). Moreover, with an increase in latitude, vegetation cover factors generally exhibit an upward trend, while temperature and rainfall exhibit a downward trend. The dust emissions in the different months showed significant differences. The total dust emission reached the highest level in "late winter–early spring" season (February to April), and the monthly emission accounted for 15–17% of the annual emissions. While in the "summer–autumn" season (July to November), it is the lowest level of the whole year, monthly emissions accounted for 3–5% of the annual emissions. The emission inventory method proposed in this study can provide a reference for dust emission assessment and further pollution prevention and control work.
Show more [+] Less [-]Human waste used as nesting material affects nest cooling in the clay-colored thrush
2021
Corrales-Moya, Josué | Barrantes, Gilbert | Chacón-Madrigal, Eduardo | Sandoval, Luis
The internal temperature of nests largely depends on the materials used in their construction because the characteristics of each material affect the isolation of nest walls. In urban environments, the availability of natural materials for nest building decreases, while the availability of artificial materials increases. Therefore, many urban bird species use more artificial materials for nest building inside cities, which may affect the thermal properties of the nest. We conducted an experiment to measure the effect of artificial materials included as part of the nest structure, on nest thermoregulation. We used as a model, nests of the clay-colored thrush (Turdus grayi), an urban bird species that have been reported using artificial nest materials. In our experiment, we measured how variation in artificial materials mass affects the nest cooling rate in a climate-controlled room. We found that artificial materials increased the cooling rate of clay-colored thrush nests, compared with nests with only natural materials. This result is especially relevant because showed a negative direct effect of the use of artificial material for nest building in birds. Considering that the availability of artificial material is increasing in urban areas, while natural material is decreasing, it is expected that the negative effect of using artificital material for nest construction would increase in the clay-colored thrush and other city bird species.
Show more [+] Less [-]Dynamics of particle retention and physiology in Euonymus japonicus Thunb. var. aurea-marginatus Hort. with severe exhaust exposure under continuous drought
2021
Lin, Xintao | Shu, Da | Zhang, Jing | Chen, Jian | Zhou, Yuanhong | Chen, Chuwen
Frequent drought events and particulate matter pollution from vehicular exhaust seriously affect urban plant growth and provisioning of ecological services. Yet, how plants respond physiologically and morphologically to these two combined stressors remains unknown. Here, we assessed particle retention dynamics and plant morphology and physiology of Euonymus japonicus Thunb. var. aurea-marginatus Hort. under continuous drought with severe exhaust exposure. Our results showed that continuous drought insignificantly lowered particle retention in each of three size fractions by 1.02 μg·cm⁻² on average in the first 28 days, but significantly lowered total particle retention by 35.75 μg·cm⁻² on the 35th day. We observed evident changes in morphology, leaf mass per area (LMA), pigments, gas exchange in all stressed plants. Compared with single stress, combined drought and pollution caused earlier yellowing and shedding of old leaves, significantly lowered LMA by 1.21 mg·cm⁻², caused a greater decline in pigments and net photosynthetic rate (Pₙ). Large particles may mainly explain pigment reduction, lower weekly LMA increases, and stomatal restriction, while coarse particles may be the main drivers of the decline in Pₙ. Continuous drought mediated the influence of all three particle sizes on some parameters, such as weakening the impact of total particles on LMA, strengthening the impact of fine particles on photosynthesis. Our findings suggest that drought accelerates the physiological responses of plants to exhaust pollution. Under controlled severe exhaust pollution conditions, the optimal time to maintain high particle retention during continuous drought without decline in physiological conditions for E. japonicus var. aurea-marginatus was 14 days. Some additional interventions after 14 days (it could be postponed appropriately under field conditions) may help ensure healthy growth of plants and retention of particulate matter.
Show more [+] Less [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
Show more [+] Less [-]Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide
2021
Su, Nana | Niu, Mengyang | Liu, Ze | Wang, Lu | Zhu, Zhengbo | Zou, Jianwen | Chen, Yahua | Cui, Jin
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd²⁺ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe²⁺) and carbon monoxide (CO), via repressing the expression of a Fe²⁺/Cd²⁺ transporter BcIRT1 in pak choi roots.
Show more [+] Less [-]