Refine search
Results 221-230 of 640
Responses to herbicides of Arctic and temperate microalgae grown under different light intensities
2023
Du, Juan | Izquierdo, Disney | Xu, Hai-feng | Beisner, Beatrix | Lavaud, Johann | Ohlund, Leanne | Sleno, Lekha | Juneau, Philippe
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
Show more [+] Less [-]First Assessment of Rare Earth Element Organotropism in Solea Solea in a Coastal Area: The West Gironde Mud Patch (France)
2023
Labassa, Maëva | Pereto, Clément | Schäfer, Jörg | Hani, Younes M.i. | Baudrimont, Magalie | Bossy, Cécile | Dassié, Émilie P. | Mauffret, Aourell | Deflandre, Bruno | Gremare, Antoine | Coynel, Alexandra
Few studies exist on bioaccumulation and internal distribution of Rare Earth Elements (REEs) in marine fishes. REEs organotropism was determined in common sole (Solea solea) from the West Gironde Mud Patch (WGMP; N-E Atlantic Coast, France). The highest REEs concentrations occurred in liver (213 ± 49.8 µg kg-1 DW) and gills (119 ± 77.5 µg kg-1 DW) followed by kidneys (57.7 ± 25.5 µg kg-1 DW), whereas the lowest levels were in muscles (4.38 ± 1.20 µg kg-1 DW) of Solea solea. No significant age- or sex-related differences were observed. The organotropism varied among groups of REEs. Light and heavy REEs preferentially accumulated in liver and gills, respectively. All considered organs showed different normalized REEs patterns, suggesting differences in internal distribution processes between organs. Further work should address: (1) baseline levels worldwide, and (2) factors controlling uptake and organ-specific bioaccumulation of REEs.
Show more [+] Less [-]Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm
2023
Barranger, Audrey | Klopp, Christophe | Le Bot, Barbara | Saramito, Gaëlle | Dupont, Lise | Llopis, Stéphanie | Wiegand, Claudia | Binet, Françoise
Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide—epoxiconazole—in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Show more [+] Less [-]Isotopic (Cu, Zn, and Pb) and elemental fingerprints of antifouling paints and their potential use for environmental forensic investigations
2023
Jeong, Hyeryeong | Ferreira Araujo, Daniel | Knoery, Joël | Briant, Nicolas | Ra, Kongtae
Antifouling paints (APs) are one of the important sources of Cu and Zn contamination in coastal environments. This study applied for the first-time a multi-isotope (Cu, Zn, and Pb) and multi-elemental characterization of different AP brands to improve their tracking in marine environments. The Cu and Zn contents of APs were shown to be remarkably high ∼35% and ∼8%, respectively. The δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb of the APs differed depending on the manufacturers and color (−0.16 to +0.36‰, −0.34 to +0.03‰, and 1.1158 to 1.2140, respectively). A PCA analysis indicates that APs, tires, and brake pads have also distinct elemental fingerprints. Combining isotopic and elemental ratios (e.g., Zn/Cu) allows to distinguish the environmental samples. Nevertheless, a first attempt to apply this approach in highly urbanized harbor areas demonstrates difficulties in source apportionments, because the sediment was chemically and isotopically homogeneous. The similarity of isotope ranges between the harbor and non-exhaust traffic emission sources suggests that most metals are highly affected by urban runoff, and that APs are not the main contributors of these metals. It is suspected that AP-borne contamination should be punctual rather than dispersed, because of APs low solubility properties. Nevertheless, this study shows that the common coastal anthropogenic sources display different elemental and isotopic fingerprints, hence the potential for isotope source tracking applications in marine environments. Further study cases, combined with laboratory experiments to investigate isotope fractionation during releasing the metal sources are necessary to improve non-traditional isotope applications in environmental forensics.
Show more [+] Less [-]Exposure of zebrafish to an environmental mixture of persistent organic pollutants triggers an increase in anxiety-like syndrome but does not affect boldness in unexposed offspring
2023
Alfonso, Sébastien | Blanc, Mélanie | Cousin, Xavier | Bégout, Marie-Laure | MARine Biodiversity Exploitation and Conservation [Sète] (UMR MARBEC SETE) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | COISPA Technologia y Ricerca ; Partenaires INRAE
International audience | Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that are present as complex mixtures in all environmental compartments, including aquatic ecosystems. However, little is known about the effects of such complex mixtures on teleost behaviour. In this study, zebrafish (Danio rerio) were chronically exposed to an environmentally relevant mixture (MIX) containing 22 PCB and 7 PBDE congeners through diet from 5 days post fertilization onwards. MIX-exposed F0 fish produced offspring (F1 and F2 generations) that were fed using plain food and grown until adulthood. In each generation, five behavioural traits (i.e. boldness, activity, sociality, exploration and anxiety) were evaluated by the mean of different experimental set-ups. Two distinct behavioural syndromes were identified: boldness, positively correlated to activity and exploration; and anxiety, associated with low sociality. F0 fish did not display any behavioural disruption resulting from POP exposure whereas F1 MIX fish were bolder than fish from other generations but did not differ significantly from F1 controls. F2 MIX fish displayed a higher anxiety syndrome than F2 controls. This is of particular importance since such behavioural changes in offspring generations may have persistent ecological consequences, may affect fitness and hence cause detrimental effects on wild fish populations exposed to POP mixtures.
Show more [+] Less [-]Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks
2023
Carravieri, Alice | Lorioux, Sophie | Angelier, Frédéric | Chastel, Olivier | Albert, Céline | Bråthen, Vegard Sandøy | Brisson-curadeau, Émile | Clairbaux, Manon | Delord, Karine | Giraudeau, Mathieu | Perret, Samuel | Poupart, Timothée | Ribout, Cécile | Viricel-pante, Amélia | Grémillet, David | Bustamante, Paco | Fort, Jérôme
Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks’ body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.
Show more [+] Less [-]Molecular and phenotypic effects of early exposure to an environmentally relevant pesticide mixture in the Pacific oyster, Crassostrea gigas.
2023
Sol Dourdin, Thomas | Rivière, Guillaume | Cormier, Alexandre | Di Poi Broussard, Carole | Guyomard, Killian | Rabiller, Manuella | Akcha, Farida | Bah, Thierno Sadialiou | Le Monier, Pauline | Sussarellu, Rossana
Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigeneration scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 μg.L−1, measured sum concentration: 3.74 ± 0.013 μg.L−1) during embryo-larval stage (0–48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.
Show more [+] Less [-]Physical processes matters! Recommendations for sampling microplastics in estuarine waters based on hydrodynamics
2023
Defontaine, Sophie | Jalon-rojas, Isabel
Monitoring the abundance and characteristics of microplastics in estuarine waters is crucial for understanding the fate of microplastics at the land-sea continuum, and for developing policies and legislation to mitigate associated risks. However, if protocols to monitor microplastic pollution in ocean waters or beach sediments are well established, they may not be adequate for estuarine environments, due to the complex 3D hydrodynamics. In this note, we review and discuss sampling methods and strategies in relation to the main environmental forcing, estuarine hydrodynamics, and their spatio-temporal scales of variability. We propose recommendations about when, where and how to sample microplastics to capture the most representative picture of microplastic pollution. This note opens discussions on the urgent need for standardized methods and protocols to routinely monitor microplastics in estuaries which should, at the same time, be easily adaptable to the different systems to ensure consistency and comparability of data across different studies.
Show more [+] Less [-]Predicting the insecticide-driven mutations in a crop pest insect: Evidence for multiple polymorphisms of acetylcholinesterase gene with potential relevance for resistance to chemicals
2023
Renault, David | Elfiky, Abdo | Mohamed, Amr | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Institut Universitaire de France (IUF) ; Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.) | Cairo University | International Research Project (IRP) "Phenomic responses of invertebrates to changing environments and multiple stress (PRICES, InEE-CNRS) and by IUF ENVIE"
International audience | The silverleaf whitefly Bemisia tabaci (Gennadius, 1889) (Homoptera: Aleyrodidae) is a serious invasive herbivorous insect pest worldwide. The excessive use of pesticides has progressively selected B. tabaci specimens, reducing the effectiveness of the treatments, and ultimately ending in the selection of pesticide-resistant strains. The management of this crop pest has thus become challenging owing to the level of resistance to all major classes of recommended insecticides. Here, we used in silico techniques for detecting sequence polymorphisms in ace1 gene from naturally occurring B. tabaci variants, and monitor the presence and frequency of the detected putative mutations from 30 populations of the silverleaf whitefly from Egypt and Pakistan. We found several point mutations in ace1-type acetylcholinesterase (ace1) in the studied B. tabaci variants naturally occurring in the field. By comparing ace1 sequence data from an organophosphate-susceptible and an organophosphate-resistant strains of B. tabaci to ace1 sequence data retrieved from GenBank for that species and to nucleotide polymorphisms from other arthropods, we identified novel mutations that could potentially influence insecticide resistance. Homology modeling and molecular docking analyses were performed to determine if the mutation-induced changes in form 1 acetylcholinesterase (AChE1) structure could confer resistance to carbamate and organophosphate insecticides. Mutations had small effects on binding energy (Delta G(b)) interactions between mutant AChE1 and insecticides; they altered the conformation of the peripheral anionic site of AChE1, and modified the enzyme surface, and these changes have potential effects on the target-site sensitivity. Altogether, the results from this study provide information on genic variants of B. tabaci ace1 for future monitoring insecticide resistance development and report a potential case of environmentally driven gene variations.
Show more [+] Less [-]Exposure of zebrafish to an environmental mixture of persistent organic pollutants triggers an increase in anxiety-like syndrome but does not affect boldness in unexposed offspring
2023
Alfonso, Sébastien | Blanc, Mélanie | Cousin, Xavier | Bégout, Marie-Laure | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC ) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | COISPA Technologia y Ricerca ; Partenaires INRAE
International audience | Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that are present as complex mixtures in all environmental compartments, including aquatic ecosystems. However, little is known about the effects of such complex mixtures on teleost behaviour. In this study, zebrafish (Danio rerio) were chronically exposed to an environmentally relevant mixture (MIX) containing 22 PCB and 7 PBDE congeners through diet from 5 days post fertilization onwards. MIX-exposed F0 fish produced offspring (F1 and F2 generations) that were fed using plain food and grown until adulthood. In each generation, five behavioural traits (i.e. boldness, activity, sociality, exploration and anxiety) were evaluated by the mean of different experimental set-ups. Two distinct behavioural syndromes were identified: boldness, positively correlated to activity and exploration; and anxiety, associated with low sociality. F0 fish did not display any behavioural disruption resulting from POP exposure whereas F1 MIX fish were bolder than fish from other generations but did not differ significantly from F1 controls. F2 MIX fish displayed a higher anxiety syndrome than F2 controls. This is of particular importance since such behavioural changes in offspring generations may have persistent ecological consequences, may affect fitness and hence cause detrimental effects on wild fish populations exposed to POP mixtures.
Show more [+] Less [-]