Refine search
Results 2221-2230 of 4,935
The Variable Fate of Ag and TiO2 Nanoparticles in Natural Soil Solutions—Sorption of Organic Matter and Nanoparticle Stability Full text
2019
Degenkolb, Laura | Kaupenjohann, Martin | Klitzke, Sondra
Engineered nanoparticles (NP) like Ag and TiO₂ offer unique properties for various applications. Thus, the entry of the NP in soil environments is expected to increase in the future due to their growing industrial use. To avoid potential hazards due to these anthropogenic products, NP behavior in the environment should be well understood. In natural soil solutions, we investigated NOM adsorption onto Ag and TiO₂ NP and its influence on NP colloidal stability. Therefore, we extracted soil solutions from a floodplain soil (Fluvisol) and a farmland soil (Cambisol) differing in NOM quality and inorganic ion concentration. We measured the amount of adsorbed organic carbon as well as changes in aromaticity and molecular weight of NOM upon adsorption onto NP. Additionally, the size and zeta potential of NP in both soil solutions were investigated. We observed that the highly hydrophilic NOM of floodplain soil solution rich in inorganic ions strongly adsorbed to Ag but not to TiO₂ NP. Instead, sorption to TiO₂ NP was observed for the more hydrophobic NOM of the farmland soil with low ionic strength which did not sorb to Ag NP. These differences had a strong effect on NP stability, leading to Ag NP destabilization in case of floodplain soil solution and TiO₂ NP stabilization in the presence of farmland soil solution. Our results point out the necessity of studies in more complex systems and suppose that oxic and metallic NP might show very different fate depending on the environment they are exposed to.
Show more [+] Less [-]Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified Full text
2019
Ferreira, Rachel M. | de Oliveira, Nazaré M. | Lima, Lorenna L. S. | Campista, Ana Laura D. M. | Stapelfeldt, Danielle M. A.
Pistia stratiotes is a common aquatic plant of the northern region of the state of Rio de Janeiro, and its use as adsorbent material was studied in the present work. The preparation process included washing, drying, grinding, and acid activation. The sorption potential for removal of the indigo carmine dye from aqueous solutions was tested under various conditions, such as initial concentration, contact time, and temperature. The tests showed that the obtained biosorbent showed good performance for dye removal with a maximum capacity of 41.2 mg/g. The kinetic studies revealed that the pseudo-second-order equation provided the best fit of the experimental data. The Freundlich isotherm provided the best fit of the experimental sorption data for the system under study. The results obtained show that Pistia stratiotes has great potential to be used as biosorbent for the removal of dyes from aqueous solutions.
Show more [+] Less [-]Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential Full text
2019
Massadeh, Adnan M. | Massadeh, Saif Addeen A.
In this study, some different selected plant leaves grown in Jordan such as Citrus limon (Rutaceae), Ceratonia siliqua L., Olea europaea (Oleaceae), Washingtonia filifera, and Myoporum (Myoporaceae) were examined for removal of copper (Cu) and zinc (Zn) ions from aqueous solutions. Cu and Zn were analyzed by atomic absorption spectrometry. A pH S-2 acidometer was used for determining the acidity of leaves solution system. Our findings showed the plants leaves were relatively efficient for removal of Cu and Zn compared to activated carbon. Removal of a 5 mg/L aqueous metal solution of Cu and Zn was treated with 2.5 g oven-dried plant in a 50 mL deionized water. The removal of Cu and Zn was expressed in terms of a time function ranged between 0 and 192 hours of contact time. The uptake of Cu and Zn by plant leaves was arranged in the following order:(i)Cu: Activated carbon > Washingtonia filifera > Ceratonia siliqua L. > Olea europaea (Oleaceae) > Myoporum (Myoporaceae) > Citrus limon (Rutaceae)(ii)Zn: Activated carbon > Olea europaea (Oleaceae) > Citrus limon (Rutaceae) > Ceratonia siliqua L. > Washingtonia filifera > Myoporum (Myoporaceae)
Show more [+] Less [-]Nobel Materials (ZnO Nanoparticles and ZnO Nanoparticles Supported on a Zeolite) for the Removal of Tartrazine from Aqueous Solutions Full text
2019
Alcantara-Cobos, A. | Solache-Rios, M. | Gutiérrez-Segura, E.
Two materials (ZnO nanoparticles (nanZnO) and a composite (Ze-nanZnO)) were prepared; the composite was prepared by chemical precipitation on a natural zeolite. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy (UV-Vis), and Branauer-Emmett-Teller (BET) surface area. These materials were evaluated for the removal of tartrazine; this dye was used because it is considered a dangerous contaminant. All experiments were done in batch process. The effect of different parameters such as the contact time, the initial dye concentration, and pH, in addition to the thermodynamic parameters, were studied in order to determine the best experimental conditions. The nanZnO shows a higher adsorption capacity than the Ze-nanZnO composite; however, the separation of the phases was difficult when nanoparticles were used. According to the kinetic data, the mechanism for the nanZnO is physisorption and for the Ze-nanZnO composite is chemisorption. The results show that this is a useful technique for the removal of this dye.
Show more [+] Less [-]Impact of intermittent turbulent bursts on sediment resuspension and internal nutrient release in Lake Taihu, China Full text
2019
Tang, Chunyan | Li, Yiping | Acharya, Kumud | Du, Wei | Gao, Xiaomeng | Luo, Liancong | Yu, Zhongbo
Intermittent turbulent bursts have great impacts on sediment resuspension in coastal regions, tidal estuaries, and lakes. In this study, the role of turbulence structure on sediment resuspension was examined at Meiliang Bay of Lake Taihu, the third largest freshwater lake in China. The instantaneous three-dimensional velocity and suspended sediment concentrations were synchronously recorded by Acoustic Doppler Velocimetry (ADV) and Optical Backscatter Sensor (OBS) placed close to the lakebed. Statistical and quadrant analyses results revealed that the coherent structure contributed significantly to sediment particle entrainment. The intermittent burst events (dominant ejection and sweep) were the main energy source for sediment resuspension processes. 99.2% of turbulent sediment fluxes were triggered by ejection and sweep events, whereas the contributions coming from the outward interactions and inward interactions were relatively small. The large-amplitude burst events in the coherent structure dominated the influence on the sediment diffusion. Additionally, it was found that instantaneous sediment particle entrainment occurred earlier than the mean critical shear stress, which was induced by the stochastic nature of turbulence. The amount of sediment flux considering the turbulence characteristics was one or two larger magnitudes than the flux amount assessed by the time-averaged flow field, which indicated the critical shear stress approach might underestimate the sediment resuspension. Therefore, the influence of turbulence performance on sediment entrainment shall be seriously considered when evaluating sediment flux and internal nutrient loads in Lake Taihu.
Show more [+] Less [-]Carbonization of Plant Residues Decreased their Capability of Reducing Hexavalent Chromium in Soils Full text
2019
Li, Bo | Yang, Junxing | Sun, Wentao | Ma, Yibing
The mechanism of Cr(VI) immobilization in soils by organic substances are not well understood. In the present study, two crop residues (maize stalk and peanut shell) and their biochars obtained at various pyrolysis temperatures were prepared to investigate their influences on the immobilization of Cr(VI) in two contaminated soils via an incubation test and a bioassay. The results showed that Cr(VI) immobilization in soils was ascribed to dominant reduction (52–99%) coupled with secondary surface adsorption (1.2–48%) by organic substances. The maximum reduction capacity (Yₘ, 238 mg/kg) was found in an acidic brown soil with maize stalk amendment, secondly, with peanut shell amendment (Yₘ, 231 mg/kg). Their biochars presented a weaker capacity in reducing Cr(VI) to Cr(III) of soils than raw crop residues since carbonization accelerated the decomposition of oxygen-containing functional groups of organic substances. Soil properties, mainly soil pH, were negatively related to Cr(VI) reduction in soils remarkably, while concomitant anions in soils mainly the phosphate could compete with Cr(VI) for surfaces of soil particles and decrease Cr(VI) adsorption and subsequent reduction. The bioassay in pots with wheat seedlings further validated that maize stalk was a better organic substance for Cr(VI) immobilization and subsequent decrease of its bioavailability in contaminated soils than its biochar according to the results of wheat biomass and Cr contents in shoots and roots. Accordingly, to develop a cost-effective method for immobilizing Cr(VI) in contaminated soils, the raw maize stalk is more advantageous than the carbonaceous counterparts because no pyrolysis is required for the application.
Show more [+] Less [-]Investigating the combined effect of thermal barrier coating and antioxidants on pine oil in DI diesel engine Full text
2019
Viswanathan, Karthickeyan | Balasubramanian, Dhinesh | Subramanian, Thiyagarajan | Varuvel, Edwin Geo
The present study presented an inclusive analysis of engine exhaust emission characteristics of direct injection diesel engine fuelled with diesel and biofuel. Biofuel used in this investigation was obtained by steam distillation from pine oil. A single-cylinder, four-stroke diesel engine was used for this purpose. In this work, performance characteristics like brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were analysed. The engine pollutants, namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke, were examined. In addition, combustion characteristics like in-cylinder pressure and heat release rate were presented. Two engine modification techniques, namely thermal barrier coating and the addition of antioxidant to biofuel, were attempted. The advantage of thermal barrier coating is to reduce heat loss from the engine and convert the accumulated heat into useful piston work. In this work, partially stabilised zirconia was used as the coating material. The usage of antioxidant-treated biofuel in a diesel engine was said to be the prominent approach for NOx emission reduction. Three different antioxidants, namely butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary-butyl hydroquinone (TBHQ), were exclusively dissolved at a concentration of 1% by volume with PO fuel. The obtained performance and emission characteristics of the uncoated engine were compared with the thermally coated engine. From the results, it was observed that the PO biofuel may be a promising alternative in the near prospect with the thermal barrier coating technique to enhance the performance, combustion and emission characteristics of diesel engine. The PO+TBHQ blend was considered as more beneficial than PO+BHT and PO+BHA on account of its performance, combustion and emission characteristics. The effectiveness of the antioxidant was shown in the order of TBHQ>BHA>BHT.
Show more [+] Less [-]Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan Full text
2019
Wang, Ying-Lin | Fang, Meng-Der | Chien, Ling-Chu | Lin, Chu-Ching | Hsi, Hsing-Cheng
In Taiwan, because of the co-use of some irrigation and drainage canals, a portion of industrial wastewater was directly discharged into irrigation canals or even flowed into rivers or wetlands, causing the heavy metal pollution in waters and sediments. Mercury (Hg) contamination in rivers, irrigation canals, and wetlands has been found in Taiwan, but a thorough investigation on the distribution of Hg and methylmercury (MeHg) in these waters and sediments, which may be present in a greater level with elevating total Hg (THg) concentration and markedly impact human health, is still lacking. In this study, surface waters and surface sediments were sampled from five major rivers, two irrigation canals, two reservoirs, and one wetland in Taiwan, and their THg and MeHg concentrations were quantified. Additionally, statistical analysis was carried out to understand the relationship between sediment properties and MeHg levels. The results showed that irrigation canal sediments were relatively more polluted by Hg and the THg concentrations of some sampling points exceeded the upper limit (i.e., 0.87 mg kg⁻¹) of sediment quality index (SQI) for THg promulgated by Taiwan Environmental Protection Administration, which may be attributed to the co-use of irrigation and drainage canals. Furthermore, the MeHg concentration in irrigation canal sediments was the highest; rivers came in second followed by wetlands. In addition, the Siangshan Wetland was analyzed to have the greatest THg and MeHg concentrations in its surface water. Linear regression analysis also indicated that total organic carbon and clay content substantially affected the MeHg production in sediments.
Show more [+] Less [-]An effective treatment method for shale gas drilling cuttings solidified body Full text
2019
Liu, Dong-sheng | Wang, Chao-qiang | Mei, Xu-dong | Qian-Huang, | Ding, Shi-min
The exploration and production of shale gas technology provides a way for utilization of clean fuels. However, during the exploration process of shale gas, enormous amount of drilling cutting was generated and had to be solidified and landfilled. So the accumulation of shale gas drilling cutting solidified body (SGDS)causes severe land resource misuse and environmental complications. This study focuses on the utilization of SGDS as a raw material for the production of cement clinker, and the phase composition, microstructure, and environmental performance of the cement clinker was investigated by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), energy-dispersive X-ray spectrum analysis (EDX), and soaking test, respectively. The results show that the cement clinker obtained mainly constitutes of typical Portland cement mineral (C₃S, C₂S, C₃A, and C₄AF). The leaching test indicated that the concentration of heavy metal ions in leachate is within the limits allowed by the state “Technical specification for co-processing of solid wastes in cement kiln” (GB 30760-2014). This study therefore provides a benchmark on environmental effects resulting from drilling cuttings and utilization of resources.
Show more [+] Less [-]Uranium Removal from Wastewater Using Mg(OH)2-Impregnated Activated Carbon Full text
2019
Saputra, Andri | Swantomo, Deni | Ariyanto, Teguh | Sulistyo, Hary
Uranium wastewater treatment has been performed by adsorption method using Mg(OH)₂-impregnated activated carbon. Research purposes are to determine (i) uptake capacity of the adsorption isotherm of uranium in Mg(OH)₂-impregnated activated carbon, (ii) mathematical correlation of uranium (VI) adsorption rate, and (iii) effect of the impregnation ratio of adsorbent to uranium removal efficiency. Adsorbent was synthesized through several stages, i.e., pyrolysis of coconut shell (400 °C), chemical activation using NaOH, and impregnation process using varied solutions of MgCl₂ (600 °C). The materials were characterized comprehensively using FTIR, BET, XRF, and XRD. The parameters studied in this research were adsorption temperature (T), average particle diameter of adsorbent (d), mass ratio of adsorbent to wastewater solution (r), and impregnation ratio of Mg(OH)₂/activated carbon. The results shown that equilibrium data are well fitted with the Langmuir isotherm model with the maximum adsorption capacity about 85 mg/g at 303 K and dimensionless constant separation factor (RL) value about 0.7. The adsorption rate was increased by increasing the adsorption temperature, mass ratio of adsorbent to wastewater solution, and the decrease of particle diameter of adsorbent with mathematical equation of the uranium (VI) adsorption rate as:[Formula: see text]In addition, the results also shown that increasing the impregnation ratio from 0.3 to 1.0 can increase the uranium removal efficiency up to 67.3%.
Show more [+] Less [-]