Refine search
Results 2271-2280 of 4,935
Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism Full text
2019
Aldmour, Suha T. | Burke, Ian T. | Bray, Andrew W. | Baker, Daniel L. | Ross, Andrew B. | Gill, Fiona L. | Cibin, Giannantonio | Ries, Michael E. | Stewart, Douglas I.
Hexavalent chromium contamination of groundwater is a worldwide problem caused by anthropogenic and natural processes. We report the rate of Cr(VI) removal by two humic acids (extracted from Miocene age lignite and younger peat soil) in aqueous suspensions across a pH range likely to be encountered in terrestrial environments. Cr(VI) was reduced to Cr(III) in a first-order reaction with respect Cr(VI) concentration, but exhibited a partial order (~ 0.5) with respect to [H+]. This reaction was more rapid with the peat humic acid, where Cr(VI) reduction was observed at all pH values investigated (3.7 ≤ pH ≤ 10.5). ¹³C NMR and pyrolysis GC-MS spectroscopy indicate that the reaction results in loss of substituted phenolic moieties and hydroxyl groups from the humic acids. X-ray absorption spectroscopy indicated that at all pH values the resulting Cr(III) was associated with the partially degraded humic acid in an inner-sphere adsorption complex. The reaction mechanism is likely to be controlled by ester formation between Cr(VI) and phenolic/hydroxyl moieties, as this initial step is rapid in acidic systems but far less favourable in alkaline conditions. Our findings highlight the potential of humic acid to reduce and remove Cr(VI) from solution in a range of environmental conditions.
Show more [+] Less [-]Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source Full text
2019
Shao, Mengyu | Guo, Liang | She, Zonglian | Gao, Mengchun | Zhao, Yangguo | Sun, Mei | Guo, Yiding
External carbon source was usually added to enhance denitrification efficiency for nitrogen removal in wastewater treatment. In this study, waster sludge alkaline fermentation liquid was successfully employed as an alternative carbon source for biological denitrification. The denitrification performance was studied at different C/Ns (carbon-to-nitrogen ratios) and HRTs (hydraulic retention times). A C/N of 7 and an HRT of 8 h were the optimal conditions for denitrification. The nitrate removal efficiency of 96.4% and no obvious nitrite accumulation in the effluent were achieved under the optimal conditions with a low soluble chemical oxygen demand (SCOD) level. The sludge carbon source utilization was analyzed and showed that the volatile fatty acids (VFAs) were prior utilized than proteins and carbohydrates. The excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) was adopted to analyze the compositional and variations of dissolved organic matters (DOM). Moreover, a high denitrification rate (VDN) and potential (PDN) with low heterotroph anoxic yield (YH) was exhibited at the optimal C/N and HRT condition, indicating the better denitrification ability and organic matter utilization efficiencies.
Show more [+] Less [-]Windbreak Wall-Vegetative Strip System to Reduce Air Emissions from Mechanically Ventilated Livestock Barns—Part 3: Layer House Evaluation Full text
2019
ʻAjamī, ʻAlī | Shah, Sanjay B. | Wang-Li, Lingjuan | Kolar, Praveen | Castillo, Miguel S.
Poultry houses emit large amounts of pollutants, e.g., ammonia and particulate matter (PM), that can affect public health, environment, and quality-of-life, due to odor. Poultry producers need low-cost and low-pressure treatments that can be compatible with existing ventilation systems. The porous windbreak wall coupled with a vegetative strip seems promising as it dissipates exhaust gases and traps PM (as well as adsorbed gases) on the screen, soil surface, as well as in the vegetation. Different windbreak wall-vegetative strip system designs were evaluated to treat the exhaust from 0.9-m fans in two types of layer house, for their abilities to reduce pollutant and odor emissions. The porous chamfered-shape windbreak wall with a footprint length of 3 fan diameters proved the most effective in reducing emissions. Even with a low system pressure of ~ 5 Pa, it greatly reduced odor, by 79% at 10 m and 59% at 5 m. It reduced TSP emissions moderately, by an average of 41%, while ammonia emissions were reduced slightly (by 21%). The chamfered screen was more readily cleaned by rainfall given the sticky nature of poultry house exhaust than the vertical screen. Overall, this low-cost, retrofittable, and modular system with a small footprint could be used by layer producers and, probably, by other poultry producers to reduce their emissions, alone or in combination with other mitigation methods to obtain greater reduction in emissions.
Show more [+] Less [-]Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action Full text
2019
Tolardo, Valentina | García-Ballesteros, Sara | Santos-Juanes, Lucas | Vercher, Rosa | Amat, Ana M. | Arques, Antonio | Laurenti, Enzo
Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5–7. Reaction carried out with 1 mg/L of PCP, 4 mg/L of H₂O₂, and 1.3 × 10⁻⁹ M of SBP showed a fast initial elimination of PCP (ca. 30% in 20 min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H₂O₂ were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.
Show more [+] Less [-]Enhanced biodiesel industry wastewater treatment via a hybrid MBBR combined with advanced oxidation processes: analysis of active microbiota and toxicity removal Full text
2019
de Oliveira Gonçalves, Luciano | Starling, Maria Clara V. M. | Leal, Cintia Dutra | Oliveira, Daniel V. M. | Araújo, Juliana Calábria | Leão, Mônica Maria D. | Amorim, Camila C.
In the present study, a multistage route is proposed for the treatment of biodiesel industry wastewater (BWW) containing around 1000 mg L⁻¹ of total organic carbon (TOC), 3500 mg L⁻¹ of chemical oxygen demand (COD), and 1325 mg L⁻¹ of oil and grease. Initially, BWW aerobic biodegradability was assessed via Zhan-Wellens biodegradability test to confirm the appropriate treatment route. Then, a hybrid moving bed bioreactor (MBBR) system was chosen as the first treatment stage. The hybrid MBBR achieved 69 and 68% removal of COD and TOC removals, respectively, and provided great conditions for biomass growth. The bacterial community present in the hybrid MBBR was investigated by PCR-DGGE and potential biodegraders were identified such as: members of Desulfuromonadales, Nocardioidaceae and Pseudomonadaceae. Since biodegradation in the hybrid MBBR alone was unable to meet quality requirements, advanced oxidation processes, such as Fenton and photo-Fenton, were optimized for application as additional treatment stages. Physicochemical properties and acute toxicity of BWW were analyzed after the multistage routes: hybrid MBBR + Fenton, hybrid MBBR + photo-Fenton and hybrid MBBR + UV-C₂₅₄ₙₘ/H₂O₂. Hybrid MBBR + Fenton or photo-Fenton showed overall COD removal efficiencies greater than 95% and removed acute toxicity, thus being appropriate integrated routes for the treatment of real BWW. Graphical abstract ᅟ
Show more [+] Less [-]Sustainable utilization of a recovered struvite/diatomite compound for lead immobilization in contaminated soil: potential, mechanism, efficiency, and risk assessment Full text
2019
Jing, Huan-Ping | Wang, Xuejiang | Xia, Peng | Zhao, Jianfu
A waste–struvite/diatomite compound (MAP@Dia) recovered from nutrient-rich wastewater treated by MgO-modified diatomite (MgO@Dia) was provided to immobilize lead in aqueous solution and contaminated soil. The mechanism and effectiveness of lead immobilization was investigated, and the pHₛₜₐₜ leaching test and fixed-bed column experiments were carried out to assess the risk of MAP@Dia reuse for lead immobilization. The results showed that MAP@Dia were effective in immobilizing lead in aqueous solution with adsorption capacity of 832.47–946.50 mg/g. The main mechanism of Pb immobilization by MAP@Dia could be contributed by surface complexation and dissolution of struvite followed by precipitation of hydroxypyromorphite Pb₁₀(PO₄)₆(OH)₂. Lead(II) concentration reduced from 269.61 to 78.26 mg/kg, and residual lead(II) increased to 53.14% in contaminated soil when the MAP@Dia application rate was 5%. The increased neutralization capacity (ANC) and lower lead extraction yields in pHₛₜₐₜ leaching test in amended soil suggested 5 times of buffering capacity against potential acidic stresses and delayed triggering of “chemical time bombs.” The results of column studies demonstrated that amendment with MAP@Dia could reduce the risk of lead and phosphorus (P) leaching. This study revealed that MAP@Dia could provide an effective solution for both P recycling and lead immobilization in contaminated soil.
Show more [+] Less [-]Electrochemical removal of nitrate by Cu/Ti electrode coupled with copper-modified activated carbon particles at a low current density Full text
2019
Wang, Qing | Huang, Hui | Wang, Laichun | Chen, Yinguang
Electrochemical reduction is currently one of promising methods for nitrate removal from water, yet most treatment approaches have problems of high cost and energy consumption. In this work, a low current density was applied in electrochemical reduction of nitrate. Copper-modified titanium (Cu/Ti) electrodes with optimal electrochemical activity and fastest kinetics were firstly screened. Thirty minutes of electrodeposition time and neutral pH were found to have the greatest nitrate reduction rate of 83.14%. To further improve the removal of nitrate, activated carbon (AC) and copper-modified activated carbon (Cu/AC) particles were applied to construct three-dimensional reaction systems, with removal rates of nitrate of 88.72% and 96.05%, respectively. The average conversion rates of nitrate to ammonia nitrogen increased from 15.28% to 42.68% and 62.64% in AC- and Cu/AC-based reaction systems, respectively. Oxidation of Cu(0) on surfaces of Cu/Ti cathode and Cu/AC particles to Cu(I) was revealed by X-ray photoelectron spectroscopy (XPS) and Cu LMM spectra analysis. Besides, results of water chemistry characteristics indicated the conversion of AC to carbonate ion. It could be concluded that enhanced nitrate reduction of Cu/Ti-based reaction system was attributed by Cu particle- and AC-mediated electron transfer. This study provided a reference for low-cost electrochemical reduction of nitrate.
Show more [+] Less [-]Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil Full text
2019
Davin, Marie | Starren, Amandine | Marit, Emilie | Lefébure, Kévin | Fauconnier, Marie-Laure | Colinet, Gilles
Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil Full text
2019
Davin, Marie | Starren, Amandine | Marit, Emilie | Lefébure, Kévin | Fauconnier, Marie-Laure | Colinet, Gilles
Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that accumulate in the environment, especially soils, and require remediation. Researches to develop bioremediation and phytoremediation (alternative eco-friendly technologies) are being conducted. First, a bioaccessibility measurement protocol was adapted to a brownfield soil using Tenax® beads in order to compare PAHs bioaccessibility in soil samples. PAHs desorption kinetics were established, described by a site distribution model, and a common extraction time was calculated (48 h). Second, the role of two Fabaceae (Medicago sativa L. or Trifolium pratense L.) root exudates in enhancing PAHs bioaccessibility and biodegradation in the studied soil was evaluated during microcosms experiments (28 °C). The CO₂ emissions were significantly higher in presence of T. pratense exudates; the dehydrogenase activities showed improvements of the soil microbial activity in presence of two types of root exudates compared to untreated soil samples; the PAHs residual contents decreased more in untreated samples than in the presence of T. pratense exudates; and M. sativa exudates lowered PAHs bioaccessibility but not residual contents.
Show more [+] Less [-]Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil Full text
2019
Davin, Marie | Starren, Amandine | Marit, Emilie | Lefébure, Kévin | Fauconnier, Marie-Laure | Colinet, Gilles
peer reviewed | Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that accumulate in the environment, especially soils, and require remediation. Researches to develop bioremediation and phytoremediation (alternative eco-friendly technologies) are being conducted. First, a bioaccessibility measurement protocol was adapted to a brownfield soil using Tenax® beads in order to compare PAHs bioaccessibility in soil samples. PAHs desorption kinetics were established, described by a site distribution model, and a common extraction time was calculated (48 h). Second, the role of two Fabaceae (Medicago sativa L. or Trifolium pratense L.) root exudates in enhancing PAHs bioaccessibility and biodegradation in the studied soil was evaluated during microcosms experiments (28 °C). The CO2 emissions were significantly higher in presence of T. pratense exudates; the dehydrogenase activities showed improvements of the soil microbial activity in presence of two types of root exudates compared to untreated soil samples; the PAHs residual contents decreased more in untreated samples than in the presence of T. pratense exudates; and M. sativa exudates lowered PAHs bioaccessibility but not residual contents.
Show more [+] Less [-]Games Strategy Study of Power Generation and Carbon Emission Rights Trading Full text
2019
Kun Xiao and Jingdong Zhang
It is of great significance to reduce carbon emissions from electric power generation for green development. In addition to technical measures, two trading mechanisms are built to optimize China’s electric power generation: generation rights trading, and carbon emission rights trading. However, as the carbon emission rights trading are initiated, the issues of how to choose the right trading mechanism, and determining the appropriate strategy under the corresponding trading mechanism continue to confuse generation enterprises. In order to clarify these issues, the game theory was used to identify the proper trading strategies for generation enterprises under the two highly similar trade mechanisms. Results show that the two trading mechanisms are complementary to each other to some extent, and the generation enterprises should choose a proper trade strategy according to the endowment of generation prices, the technical abilities, the grid-loss price and the ratio of carbon-electricity conversion. The equilibrium solutions of trading scales and prices for the two trading mechanisms are mostly related to the endowments of generation prices. Generally, the buyers with higher endowments of generation prices should choose the carbon emission rights trading, and the buyers with lower endowments of generation prices can only benefit in generation rights trading. The bigger gaps between the endowments of generation prices of buyers and sellers are, the more likely the trade can be made and further result in a better environmental consequence. The conclusions provide suggestions to the government that, the grid-loss pricing and the ratio of carbon-electricity conversion could be used as key tools to regulate the market for both of the trade mechanisms.
Show more [+] Less [-]Nano-porous Membrane Process for Brackish Groundwater Treatment: Efficiency Analysis Using Response Surface Methodology Full text
2019
Yuzheng Lv, Jihao Zhou, Zhengjun Mai and Jie Liu
Excessively high concentration of inorganic salts in the groundwater is the main threat for residents to drink directly in the remote areas of northwestern China. In this paper, nano-porous membrane process was proposed to removal of diverse ions in such raw water. Through the response surface methodology (RSM), the effects of multiple factors on permeate flux and ion rejection rates were analysed, and the application scope of nanofiltration for various water resource was evaluated. It was found that the factors affecting permeate flux, chloride removal and nitrate removal (response value) followed some typical sequences, and the operating pressure was always the most influential factor. Besides, nanoporous membrane process showed predominant performance in the removal of sulphate, chloride and fluoride; the rejection rates were over 99%, 97% and 95%, respectively, and the produced water could completely satisfy the relevant national standards for drinking water. However, nitrate removal rate was seldom over 80%, and it reduced obviously with the increasing initial concentration of nitrate, thus the nitrate content of raw water should be controlled within 40 mg.L-1.
Show more [+] Less [-]