Refine search
Results 231-240 of 4,241
Temporal trends of infant and birth outcomes in Minamata after severe methylmercury exposure
2017
Yorifuji, Takashi | Kashima, Saori | Suryadhi, Made Ayu Hitapretiwi | Abudureyimu, Kawuli
Severe methylmercury poisoning occurred in Minamata and neighboring communities in Japan during the 1950s and 1960s, causing what is known as Minamata disease. Although an increase in stillbirths and a reduced male proportion at birth (i.e., reduced sex ratio) have been reported, no studies have evaluated the impact of exposure on an entire set of infant and birth outcomes. We therefore evaluated the temporal trends of these outcomes in the Minamata area from 1950 to 1974. We focused on the spontaneous/artificial stillbirth rate, crude fertility rate, male proportion at birth, male proportion among stillbirths, and infant mortality. We obtained the number of stillbirths, live births, and infant deaths in Minamata City and Kumamoto Prefecture (as a reference) from 1950 to 1974. After plotting annual figures for each outcome, we divided the study period into five intervals and compared them between Minamata City and Kumamoto Prefecture using the chi-squared test. We observed a slightly increased spontaneous stillbirth rate and decreased artificial stillbirth rate in Minamata City, followed by a reduced crude fertility rate. The crude fertility rates in Minamata City during the period 1955–1965 were significantly lower compared with those in Kumamoto Prefecture (p < 0.001). An increase in the male proportion among stillbirths was observed, corresponding to a reduction in the proportion of males at birth in the late 1950s. The impact on infant mortality was equivocal. These descriptive analyses demonstrate a severe regional impact of methylmercury exposure on a series of birth outcomes in the Minamata area.
Show more [+] Less [-]Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community
2017
Di Cesare, Andrea | Eckert, Ester M. | Rogora, Michela | Corno, Gianluca
Infections with antibiotic resistant bacteria are among the major threats for human health. Studies elucidating the role of the environment in their spread are still in their infancy, it, however, seems that different environments might function as a long-term reservoir of antibiotic resistance genes (ARGs) that reside within their microbial communities. An increasing number of studies target the presence and the persistence of ARGs in waters and soils that are exposed to human activities; they, however, rarely consider the spatial/temporal variability that predominate in these environments. Here we evaluated the effect of a moderate rain event (4 mm rain h−1) on the abundance and distribution of ARGs (tetA, ermB, blaCTXM, sulII, and qnrS), by comparing measurements of gene abundances during the rainfall to the yearly average, in the waters of a large subalpine river. ARG abundances, which all increased during the rain event, were then correlated to several microbiological, physical and chemical variables, in order to establish their potential origin. Increments in ARG abundances during rainfall (total ARGs: 24 fold) was concomitant to an increase in total phosphorous, N-NH4, and microbial aggregates. Our results show a strong influence of a moderate rainfall on the abundances of ARGs, and suggest the catchment as their source. The impact of moderate rainfalls in areas exposed to anthropic activities should then be considered in modelling and management of ARG dynamics.
Show more [+] Less [-]Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China
2017
Cao, Fang | Zhang, Shi-Chun | Kawamura, Kimitaka | Liu, Xiaoyan | Yang, Chi | Xu, Zufei | Fan, Meiyi | Zhang, Wenqi | Bao, Mengying | Chang, Yunhua | Song, Wenhuai | Liu, Shoudong | Lee, Xuhui | Li, Jun | Zhang, Gan | Zhang, Yan-Lin
Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47∘35 N, 133∘31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C2-C11) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C4) acid > oxalic (C2) acid > malonic (C3) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC2), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C3/C4, maleic acid/fumaric acid, C2/ωC2, and C2/levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols.
Show more [+] Less [-]Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles
2017
Nazarenko, Yevgen | Fournier, Sébastien | Kurien, Uday | Rangel-Alvarado, Rodrigo Benjamin | Nepotchatykh, Oleg | Seers, Patrice | Ariya, Parisa A.
Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50–400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (−8) – (−10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.
Show more [+] Less [-]Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China
2017
Xu, Pengjun | Tao, Bu | Zhou, Zhiguang | Fan, Shuang | Zhang, Ting | Liu, Aimin | Dong, Shuping | Yuan, Jingli | Li, Hong | Chen, Jiping | Huang, Yeru
Guiyu, China, is well-known for the crude disposal of electronic waste (EW) and severe persistent organic pollutants (POPs). Therefore, in this study, the occurrence, composition, and source of polybrominated diphenyl ethers (PBDEs), 2,2′,4,4′,5,5’-hexabromobiphenyl (BB153), some novel brominated flame retardants (NBFRs), Dechlorane Plus (DP) and polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) in farmland soils covering Guiyu were studied. In EW disposal area soils, PBDEs were the most abundant FRs, with concentrations of 13–1014 ng g−1. The primary PBDE sources were technical Penta- and Deca-BDE mixtures in northern and southern Guiyu, respectively. The levels of BB153 were relatively low, possibly because it has been banned in the 1970s. The concentrations of hexabromobenzene (HBB) were 0.048–3.3 ng g−1, while pentabromoethylbenzene (PBEB) was almost not detected in the soils. Two alternatives to commercial PBDEs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were the primary NBFRs, with concentrations of 1.8–153 ng g−1 and 0.43–15 ng g−1, respectively. DP was another primary FR, with concentrations of 0.57–146 ng g−1. Moreover, syn-DP and anti-DP isomers were not stereoselectively decomposed during the EW disposal process and were therefore present in their original fractions in the soils. The levels of PBDD/Fs in EW disposal area soils were 2.5–17 pg TEQ g−1. 1,2,3,4,6,7,8-HpBDF and OBDF were the dominant congeners, mainly derived from processing, pyrolysis and combustion of BFRs. The regional distribution of pollutants was shown to be related to the disposal manner of EW, with their open thermal disposal tending to release more highly brominated compounds such as BDE209, DBDPE, and 1,2,3,4,6,7,8-HpBDF. Additionally, some riverbank sites were heavily polluted because of nearby point sources, downwind Simapu (SMP) town without EW disposal activity was also contaminated by these pollutants.
Show more [+] Less [-]Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation
2017
Sun, Lu | Zhu, Ganghui | Liao, Xiaoyong | Yan, Xiulan
The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency.
Show more [+] Less [-]An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas
2017
Votsi, Nefta-Eleftheria P. | Kallimanis, Athanasios S. | Pantis, Ioannis D.
Quietness exists in places without human induced noise sources and could offer multiple benefits to citizens. Unlit areas are sites free of human intense interference at night time. The aim of this research is to develop an integrated environmental index of noise and light pollution. In order to achieve this goal the spatial pattern of quietness and darkness of Europe was identified, as well as their overlap. The environmental index revealed that the spatial patterns of Quiet and Unlit Areas differ to a great extent highlighting the importance of preserving quietness as well as darkness in EU. The spatial overlap of these two environmental characteristics covers 32.06% of EU surface area, which could be considered a feasible threshold for protection. This diurnal and nocturnal metric of environmental quality accompanied with all direct and indirect benefits to human well-being could indicate a target for environmental protection in the EU policy and practices.
Show more [+] Less [-]Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils
2017
Zhang, Miaoyue | Engelhardt, Irina | Šimůnek, Jirka | Bradford, Scott A. | Kasel, Daniela | Berns, Anne E. | Vereecken, H. (Harry) | Klumpp, Erwin
Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two ¹⁴C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1–10 mg L⁻¹) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.
Show more [+] Less [-]Tetracyclines metal complexation: Significance and fate of mutual existence in the environment
2017
Pulicharla, Rama | Hegde, Krishnamoorthy | Brar, Satinder Kaur | Surampalli, Rao Y.
Concern over tetracyclines (TCs) complexation with metals in the environment is growing as a new class of emerging contaminants. TCs exist as a different net charged species depending on their dissociation constants, pH and the surrounding environment. One of the key concerns about TCs is its strong tendency to interact with various metal ions and form metal complexes. Moreover, co-existence of TCs and metals in the environment and their interactions has shown increased antibiotic resistance. Despite extensive research on TCs complexation, investigations on their antibiotic efficiency and pharmacological profile in bacteria have been limited. In addition, the current knowledge on TCs metal complexation, their fate and risk assessment in the environment are inadequate to obtain a clear understanding of their consequences on living systems. This indicates that vital and comprehensive studies on TCs-metal complexation, especially towards growing antibiotic resistance trends are required. This review summarizes the role of TCs metal complexation on the development of antibiotic resistance. Furthermore, impact of metal complexation on degradation, toxicity and the fate of TCs in the environment are discussed and future recommendations have been made.
Show more [+] Less [-]Endosulfan induces autophagy and endothelial dysfunction via the AMPK/mTOR signaling pathway triggered by oxidative stress
2017
Zhang, Lianshuang | Wei, Jialiu | Ren, Lihua | Zhang, Jin | Wang, Ji | Jing, Li | Yang, Man | Yu, Yang | Sun, Zhiwei | Zhou, Xianqing
Cardiovascular diseases is related to environmental pollution. Endosulfan is an organochlorine pesticide and its toxicity has been reported. However, the relationship between oxidative stress and autophagy induced by endosulfan and its underlying mechanism remain confusing. In this study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, 12 μg/mL−1 endosulfan for 24 h, respectively. The present results showed that autophagy could be induced by endosulfan, which was verified by the monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion. In addition, the levels of adenosine triphosphate (ATP), the mitochondria membrane potential (MMP) were significantly decreased in a dose-dependent way. The expression of proinflammatory cytokines (tumor necrosis factor α, interleukin-1β, and interleukin-6) were significantly elevated, and the index of endothelial function such as monocyte chemotactic protein 1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) increased. Moreover, endosulfan had an activation effect on the 5′AMP-activated protein kinase (AMPK)/rapamycin (mTOR) signaling pathway. Our findings demonstrated that endosulfan could induce oxidative stress and mitochondria injury, activate autophagy, induce inflammatory response, and eventually lead to endothelial dysfunction via the AMPK/mTOR pathway. This indicates that exposure to endosulfan is a potential risk factor for cardiovascular diseases.
Show more [+] Less [-]