Refine search
Results 241-250 of 6,643
Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L) Full text
2020
Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L) Full text
2020
Antibiotics can be uptaken by plants from soil desorption or directly from irrigation water, but their metabolization pathways in plants are largely unknown. In this paper, an analytical workflow based on high-resolution mass spectrometry was applied for the systematic identification of biotransformation products of ofloxacin in lettuce. The targeted metabolites were selected by comparing the mass chromatograms of exposed with control samples using an advanced spectra-processing method (Fragment Ion Search). The innovative methodology presented allowed us to identify a total of 11 metabolites, including 5 ofloxacin metabolites that are being reported for the first time in plants. Accordingly, major transformation pathways were proposed revealing insight into how ofloxacin and related chemicals are metabolized in lettuce. Furthermore, the influence of biotransformation on potential residual antimicrobial activity of identified compounds was discussed. Human exposure to antibiotics at doses below the minimum inhibitory concentrations is crucial in human risk assessment, including food ingestion; however, in the case of ofloxacin presented results reveal that plant metabolites should also be considered so as not to underestimate their risk.
Show more [+] Less [-]Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L) Full text
2020
Tadić, Đorđe | Gramblicka, Michal | Mistrik, Robert | Flores, Cintia | Piña, Benjamín | Bayona Termens, Josep María | European Commission | Flores, Cintia [0000-0002-7766-5639] | Piña, Benjamín [0000-0001-9216-276] | Bayona Termens, Josep María [0000-0001-5042-837X]
Antibiotics can be uptaken by plants from soil desorption or directly from irrigation water, but their metabolization pathways in plants are largely unknown. In this paper, an analytical workflow based on high-resolution mass spectrometry was applied for the systematic identification of biotransformation products of ofloxacin in lettuce. The targeted metabolites were selected by comparing the mass chromatograms of exposed with control samples using an advanced spectra-processing method (Fragment Ion Search). The innovative methodology presented allowed us to identify a total of 11 metabolites, including 5 ofloxacin metabolites that are being reported for the first time in plants. Accordingly, major transformation pathways were proposed revealing insight into how ofloxacin and related chemicals are metabolized in lettuce. Furthermore, the influence of biotransformation on potential residual antimicrobial activity of identified compounds was discussed. Human exposure to antibiotics at doses below the minimum inhibitory concentrations is crucial in human risk assessment, including food ingestion; however, in the case of ofloxacin presented results reveal that plant metabolites should also be considered so as not to underestimate their risk. | The work presented in this paper is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 675530. Special thanks to Dr. Nikiforos Alygizakis and Dr. Josep Caixach, for their advice on the elucidation of metabolites. | Peer reviewed
Show more [+] Less [-]Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger Full text
2020
Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger Full text
2020
Lead intoxication is an important threat to human health and a large number of wildlife species. Animals are exposed to several sources of lead highlighting hunting ammunition and lead that is bioavailable in topsoil. Disentangling the role of each in lead exposure is an important conservation issue, particularly for species potentially affected by lead poisoning, such as vultures. The identification of lead sources in vultures and other species has been classically addressed by means of stable-isotope comparisons, but the extremely varied isotope signatures found in ammunition hinders this identification when it overlaps with topsoil signatures. In addition, assumptions related to the exposure of individual vultures to lead sources have been made without knowledge of the actual feeding grounds exploited by the birds. Here, we combine lead concentration analysis in blood, novel stable isotope approaches to assign the origin of the lead and GPS tracking data to investigate the main foraging grounds of two Iberian griffon vulture populations (N = 58) whose foraging ranges differ in terms of topsoil lead concentration and intensity of big game hunting activity. We found that the lead signature in vultures was closer to topsoil than to ammunition, but this similarity decreased significantly in the area with higher big game hunting activity. In addition, attending to the individual home ranges of the tracked birds, models accounting for the intensity of hunting activity better explained the higher blood lead concentration in vultures than topsoil exposure. In spite of that, our finding also show that lead exposure from topsoil is more important than previously thought.
Show more [+] Less [-]Dust and bullets: stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger Full text
2020
Arrondo, Eneko | Navarro, Juan | Pérez-García, Juan M. | Mateo, Rafael | Camarero, Pablo R. | Rodríguez Martin-Doimeadios, Rosa C. | Jiménez-Moreno, María | Cortés-Avizanda, Ainara | Navas, Isabel | García-Fernández, Antonio Juan | Sánchez-Zapata, José Antonio | Donázar, José A.
Lead intoxication is an important threat to human health and a large number of wildlife species. Animals are exposed to several sources of lead highlighting hunting ammunition and lead that is bioavailable in topsoil. Disentangling the role of each in lead exposure is an important conservation issue, particularly for species potentially affected by lead poisoning, such as vultures. The identification of lead sources in vultures and other species has been classically addressed by means of stable-isotope comparisons, but the extremely varied isotope signatures found in ammunition hinders this identification when it overlaps with topsoil signatures. In addition, assumptions related to the exposure of individual vultures to lead sources have been made without knowledge of the actual feeding grounds exploited by the birds. Here, we combine lead concentration analysis in blood, novel stable isotope approaches to assign the origin of the lead and GPS tracking data to investigate the main foraging grounds of two Iberian griffon vulture populations (N=58) whose foraging ranges differ in terms of topsoil lead concentration and intensity of big game hunting activity. We found that the lead signature in vultures was closer to topsoil than to ammunition, but this similarity decreased significantly in the area with higher big game hunting activity. In addition, attending to the individual home ranges of the tracked birds, models accounting for the intensity of hunting activity better explained the higher blood lead concentration in vultures than topsoil exposure. In spite of that, our finding also show that lead exposure from topsoil is more important than previously thought.
Show more [+] Less [-]Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger Full text
2020
Arrondo, Eneko | Navarro, Joan | Pérez-García, Juan M. | Mateo, Rafael | Camarero, Pablo R. | Rodríguez Martín-Doimeadios, Rosa C. | Jiménez-Moreno, María | Cortés-Avizanda, Ainara | Navas, Isabel | García-Fernández, Antonio J. | Sánchez-Zapata, José A. | Donázar, José A. | Bárdenas Reales de Navarra | Junta de Andalucía | Ministerio de Economía y Competitividad (España) | Junta de Comunidades de Castilla-La Mancha | La Caixa | Govern de les Illes Balears | Agencia Estatal de Investigación (España)
9 pages, 3 figures, 2 tables, supplementary data https://doi.org/10.1016/j.envpol.2020.115022 | Lead intoxication is an important threat to human health and a large number of wildlife species. Animals are exposed to several sources of lead highlighting hunting ammunition and lead that is bioavailable in topsoil. Disentangling the role of each in lead exposure is an important conservation issue, particularly for species potentially affected by lead poisoning, such as vultures. The identification of lead sources in vultures and other species has been classically addressed by means of stable-isotope comparisons, but the extremely varied isotope signatures found in ammunition hinders this identification when it overlaps with topsoil signatures. In addition, assumptions related to the exposure of individual vultures to lead sources have been made without knowledge of the actual feeding grounds exploited by the birds. Here, we combine lead concentration analysis in blood, novel stable isotope approaches to assign the origin of the lead and GPS tracking data to investigate the main foraging grounds of two Iberian griffon vulture populations (N = 58) whose foraging ranges differ in terms of topsoil lead concentration and intensity of big game hunting activity. We found that the lead signature in vultures was closer to topsoil than to ammunition, but this similarity decreased significantly in the area with higher big game hunting activity. In addition, attending to the individual home ranges of the tracked birds, models accounting for the intensity of hunting activity better explained the higher blood lead concentration in vultures than topsoil exposure. In spite of that, our finding also show that lead exposure from topsoil is more important than previously thought | The research was funded by Comunidad de Bardenas Reales de Navarra the Project RNM-1925 (Junta de Andalucía), Project CGL 2015-66966-C2-1-2-R (Spanish Ministry of Economy and Competitiveness and EU/ERDF) and Project PPII-2014-028-P (Junta de Comunidades de Castilla-La Mancha). EA was supported by La Caixa-Severo Ochoa International PhD Program 2015. JN was funded by the Spanish National Program Ramón y Cajal (RYC-2015-17809). ACA was supported by a PostDoc contract Programa Viçent Mut of Govern Balear (PD/039/2017) and and by a contract Juan de la Cierva Incorporación (IJCI-2014-20744) from the Spanish Ministry of Economy and Competitiveness | With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI)
Show more [+] Less [-]Usability of the bivalves Dreissena polymorpha and Anodonta anatina for a biosurvey of the neurotoxin BMAA in freshwater ecosystems Full text
2020
Lepoutre, A. | Hervieux, J. | Faassen, E.J. | Zweers, A.J. | Lurling, M. | Geffard, A. | Lance, E.
Usability of the bivalves Dreissena polymorpha and Anodonta anatina for a biosurvey of the neurotoxin BMAA in freshwater ecosystems Full text
2020
Lepoutre, A. | Hervieux, J. | Faassen, E.J. | Zweers, A.J. | Lurling, M. | Geffard, A. | Lance, E.
The environmental neurotoxin β-methylamino-L-alanine (BMAA) may represent a risk for human health in case of chronic exposure or after short-term exposure during embryo development. BMAA accumulates in freshwater and marine organisms consumed by humans. It is produced by marine and freshwater phytoplankton species, but the range of producers remains unknown. Therefore, analysing the phytoplankton composition is not sufficient to inform about the risk of freshwater contamination by BMAA. Filter-feeders mussels have accumulation capacities and therefore appear to be relevant to monitor various pollutants in aquatic ecosystems. We investigated the suitability of the freshwater mussels Dreissena polymorpha and Anodonta anatina for monitoring BMAA in water. Both species were exposed to 1, 10, and 50 μg of dissolved BMAA/L daily for 21 days, followed by 42 days of depuration in clean water. On days 0, 1, 7, 14, and 21 of exposure and 1, 7, 14, 21 and 42 of depuration, whole D. polymorpha and digestive glands of A. anatina were sampled, and the total BMAA concentration was measured. D. polymorpha accumulated BMAA earlier (from day 1 at all concentrations) and at higher tissue concentrations than A. anatina, which accumulated BMAA from day 14 when exposed to 10 μg BMAA/L and from day 7 when exposed to 50 μg BMAA/L. As BMAA accumulation by D. polymorpha was time and concentration-dependent, with a significant elimination during the depuration period, this species may be able to reflect the levels and dynamics of water contamination by dissolved BMAA. The species A. anatina could be used for monitoring water concentrations above 10 μg BMAA/L.
Show more [+] Less [-]Usability of the bivalves Dreissena polymorpha and Anodonta anatina for a biosurvey of the neurotoxin BMAA in freshwater ecosystems Full text
2020
Lepoutre, A. | Hervieux, J. | Faassen, E.J. | Zweers, A.J. | Lurling, M. | Geffard, A. | Lance, E.
The environmental neurotoxin β-methylamino-L-alanine (BMAA) may represent a risk for human health in case of chronic exposure or after short-term exposure during embryo development. BMAA accumulates in freshwater and marine organisms consumed by humans. It is produced by marine and freshwater phytoplankton species, but the range of producers remains unknown. Therefore, analysing the phytoplankton composition is not sufficient to inform about the risk of freshwater contamination by BMAA. Filter-feeders mussels have accumulation capacities and therefore appear to be relevant to monitor various pollutants in aquatic ecosystems. We investigated the suitability of the freshwater mussels Dreissena polymorpha and Anodonta anatina for monitoring BMAA in water. Both species were exposed to 1, 10, and 50 μg of dissolved BMAA/L daily for 21 days, followed by 42 days of depuration in clean water. On days 0, 1, 7, 14, and 21 of exposure and 1, 7, 14, 21 and 42 of depuration, whole D. polymorpha and digestive glands of A. anatina were sampled, and the total BMAA concentration was measured. D. polymorpha accumulated BMAA earlier (from day 1 at all concentrations) and at higher tissue concentrations than A. anatina, which accumulated BMAA from day 14 when exposed to 10 μg BMAA/L and from day 7 when exposed to 50 μg BMAA/L. As BMAA accumulation by D. polymorpha was time and concentration-dependent, with a significant elimination during the depuration period, this species may be able to reflect the levels and dynamics of water contamination by dissolved BMAA. The species A. anatina could be used for monitoring water concentrations above 10 μg BMAA/L. D. polymorpha and A. anatina could be used to biomonitor BMAA in fresh water.
Show more [+] Less [-]Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa Full text
2020
Bellas, Juan | Gil, Irene
Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa Full text
2020
Bellas, Juan | Gil, Irene
Ingestion of microplastics by marine organisms has been well documented, but their interaction with chemical pollutants has not been sufficiently addressed. The aim of this study was to determine the individual and combined effects of chlorpyrifos (CPF) and polyethylene microplastics (MP) on the survival, fecundity, feeding and egg viability of Acartia tonsa, a calanoid copepod widely distributed in planktonic communities. The median lethal concentration obtained for CPF was higher (LC₅₀ = 1.34 μg/L) than for the combination with MP (LC₅₀ = 0.37 μg/L), or CPF-loaded MP (LC₅₀ = 0.26 μg/L). Significant effects were also observed for feeding and egg production (EC₅₀ = 0.77 and 1.07 μg/L for CPF, 0.03 and 0.05 μg/L for CPF combined with MP, 0.18 and 0.20 μg/L for CPF-loaded MP). No significant effects were observed in the exposure to ‘virgin’ MP. This study confirms the role of MP as vectors of pollutants to marine organisms and supports the increased availability of certain toxicants carried out by MP. The effects observed in fitness-related responses suggest potential damage to A. tonsa populations. The comparison of the results obtained here with environmental concentrations indicates that the combined exposure to CPF and MP could constitute a risk to A. tonsa in the natural environment.
Show more [+] Less [-]Polyethylene microplastics increase the toxicity of chlorpyrifos to Acartia tonsa copepods Full text
2020
Bellas, Juan | Gil, I.
Ingestion of microplastics by marine organisms has been well documented, but their interaction with chemical pollutants has not been sufficiently addressed. The aim of this study was to determine the individual and combined effects of chlorpyrifos (CPF) and polyethylene microplastics (MP) on the survival, fecundity, feeding and egg viability of Acartia tonsa, a calanoid copepod widely distributed in planktonic communities. The median lethal concentration obtained for CPF was higher (LC50 ¼ 1.34 mg/L) than for the combination with MP (LC50 ¼ 0.37 mg/L), or CPF-loaded MP (LC50 ¼ 0.26 mg/L). Significant effects were also observed for feeding and egg production (EC50 ¼ 0.77 and 1.07 mg/L for CPF, 0.03 and 0.05 mg/L for CPF combined with MP, 0.18 and 0.20 mg/L for CPF-loaded MP). No significant effects were observed in the exposure to ‘virgin’ MP. This study confirms the role of MP as vectors of pollutants to marine organisms and supports the increased availability of certain toxicants carried out by MP. The effects observed in fitness-related responses suggest potential damage to A. tonsa populations. The comparison of the results obtained here with environmental concentrations indicates that the combined exposure to CPF and MP could constitute a risk to A. tonsa in the natural environment | Sí
Show more [+] Less [-]Active emigration from climate change-caused seawater intrusion into freshwater habitats Full text
2020
Venâncio, C. | Ribeiro, R. | Lopes, I.
Active emigration from climate change-caused seawater intrusion into freshwater habitats Full text
2020
Venâncio, C. | Ribeiro, R. | Lopes, I.
Ecological risk assessment associated with seawater intrusions has been supported on the determination of lethal/sublethal effects following standard protocols that force exposure neglecting the ability of mobile organisms to spatially avoid salinized environments. Thus, this work aimed at assessing active emigration from climate change-caused seawater intrusion into freshwater habitats. To specific objectives were delineated: first, to compute median 12-h avoidance conductivities (AC₅₀,₁₂ₕ) for freshwater species, and second, to compare it with literature data (LC₅₀,₄₈ ₒᵣ ₉₆ₕ, EC₅₀,₆ ₒᵣ ₂₁d) to assess the relevance of the inclusion of stressor-driven emigration into risk assessment frameworks. Four standard test species, representing a broad range of ecological niches – Daphnia magna, Heterocypris incongruens, Danio rerio and Xenopus laevis – were selected. The salt NaCl was used as a surrogate of natural seawater to create the saline gradient, which was established in a 7-compartment system.At each specific LC₅₀, ₄₈ ₒᵣ ₉₆ₕ, the proportion of avoiders were well above 50%, ranging from 71 to 94%. At each LC₅₀, considering also avoiders, populations would decline by 85–97%. Furthermore, for D. magna and X. laevis it was noticed that at the lowest conductivities eliciting mortality, the avoidance already exceeded 50%.The results showed that the emigration from salinity-disturbed habitats exists and that can even be more sensitive than standard endpoints. Looking solely to standard endpoints involving forced exposure may greatly underestimate the risk of local population extinction, because habitat function can be severely disrupted, with subsequent stressor-driven emigration, before any adverse physiological effects at the organism level. Thus, the present study highlights the need to include non-forced exposure testing into ecological risk assessment, namely of salinity-menaced costal freshwaters.
Show more [+] Less [-]Active emigration from climate change-caused seawater intrusion into freshwater habitats Full text
2020
Venâncio, C. | Ribeiro, R. | Lopes, I.
Ecological risk assessment associated with seawater intrusions has been supported on the determination of lethal/sublethal effects following standard protocols that force exposure neglecting the ability of mobile organisms to spatially avoid salinized environments. Thus, this work aimed at assessing active emigration from climate change-caused seawater intrusion into freshwater habitats. To specific objectives were delineated: first, to compute median 12-h avoidance conductivities (AC50,12h) for freshwater species, and second, to compare it with literature data (LC50,48 or 96h, EC50,6 or 21d) to assess the relevance of the inclusion of stressor-driven emigration into risk assessment frameworks. Four standard test species, representing a broad range of ecological niches - Daphnia magna, Heterocypris incongruens, Danio rerio and Xenopus laevis - were selected. The salt NaCl was used as a surrogate of natural seawater to create the saline gradient, which was established in a 7-compartment system. At each specific LC50, 48 or 96h, the proportion of avoiders were well above 50%, ranging from 71 to 94%. At each LC50, considering also avoiders, populations would decline by 85-97%. Furthermore, for D. magna and X. laevis it was noticed that at the lowest conductivities eliciting mortality, the avoidance already exceeded 50%. The results showed that the emigration from salinity-disturbed habitats exists and that can even be more sensitive than standard endpoints. Looking solely to standard endpoints involving forced exposure may greatly underestimate the risk of local population extinction, because habitat function can be severely disrupted, with subsequent stressor-driven emigration, before any adverse physiological effects at the organism level. Thus, the present study highlights the need to include non-forced exposure testing into ecological risk assessment, namely of salinity-menaced costal freshwaters. | published
Show more [+] Less [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques Full text
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques Full text
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Show more [+] Less [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques * Full text
2020
Yan, Bofang | Isaure, M.-P. | Mounicou, Sandra | Castillo-Michel, Hiram | de Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | European Synchrotron Radiation Facility (ESRF) | CADMIGRAIN project | AQUITRACE project | ANR-15-CE21-0001,CaDON,Cadmium et Deoxynivalenol dans les récoltes de blé dur: comprendre les évènements de contamination croisée et évaluer la toxicité du mélange.(2015)
International audience | Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Show more [+] Less [-]Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model Full text
2020
Ruuskanen, Suvi | Rainio, Miia J. | Gómez-Gallego, Carlos | Selenius, Otto | Salminen, Seppo | Collado, Maria Carmen | Saikkonen, Kari | Saloniemi, Irma | Helander, Marjo
Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model Full text
2020
Ruuskanen, Suvi | Rainio, Miia J. | Gómez-Gallego, Carlos | Selenius, Otto | Salminen, Seppo | Collado, Maria Carmen | Saikkonen, Kari | Saloniemi, Irma | Helander, Marjo
Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days–52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry.
Show more [+] Less [-]Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model Full text
2020
Ruuskanen, S. | Rainio, M.J. | Gómez-Gallego, Carlos | Selenius, O. | Salminen, S. | Collado, María Carmen | Saikkonen, K. | Saloniemi, I. | Helander, M. | Academy of Finland | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days–52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry. | The study was funded by the Academy of Finland (grant no. 311077 to MH). | Peer reviewed
Show more [+] Less [-]Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites Full text
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites Full text
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Mining activity may cause heavy metal accumulation, which threatens human and animal health by their long-term persistence in the environment. This study aims to assess the impact of polymetallic pollution on chicken (Gallus domesticus) from old lead mining sites in northeast of Tunisia: Jebel Ressas (JR). Samples of soil and chickens were collected from five sites being ranked along a gradient of heavy metal contamination. Heavy metal loads were evaluated in soil samples and in chicken liver and kidney. Biochemical evaluation of oxidative stress parameters termed as Catalase (CAT), Glutathione-S-Transferase (GST), and Malondialdehydes (MDA) accumulation was monitored. Metallothionein protein level was assessed as a specific response to heavy metals. DNA alteration was achieved using MNi frequency in the investigated tissues. Finally, the evaluation of gene expression levels of CAT, GST, mt1, mt4, P53, bcl2, caspase3 and DNA-ligase was performed. Our data showed the highest loads of Cd, Cu, Zn and Pb in tissues of animals from site 3, being more pronounced in kidney. Biochemical data suggested a significant increase in antioxidant enzymes activities in all sites respect to control except in site 3 were CAT and GST were inhibited. DNA alteration was observed in all tissues being very pronounced in animals from site 3. Overall, transcriptomic data showed that genes involved in apoptosis were up-regulated in animals exposed to the most contaminated soils. Our data suggest that chicken and selected biomarkers offer a suitable model for biomonitoring assessment of heavy metals transfer through the food web in mining sites. Finally, the obtained results of heavy metals accumulation and related alterations should be carefully considered in view of the controversial relationship between distribution and toxicology of contaminants in exposed organisms.
Show more [+] Less [-]Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites. Full text
2020
Kribi-Boukhris, Sameh El. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valerie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed | Laboratory of Biochemistry and Environmental Toxicology ; Institut Supérieur Agronomique Chott-Mériem (ISA) | Faculty of Sciences of Tunis (University of Tunis) ; Tunis El Manar University [University of Tunis El Manar] [Tunisia] = Université de Tunis El Manar [Tunisie] = جامعة تونس المنار (ar) (UTM) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Mining activity may cause heavy metal accumulation, which threatens human and animal health by their long-term persistence in the environment. This study aims to assess the impact of polymetallic pollution on chicken (Gallus domesticus) from old lead mining sites in northeast of Tunisia: Jebel Ressas (JR). Samples of soil and chickens were collected from five sites being ranked along a gradient of heavy metal contamination. Heavy metal loads were evaluated in soil samples and in chicken liver and kidney. Biochemical evaluation of oxidative stress parameters termed as Catalase (CAT), Glutathione-S-Transferase (GST), and Malondialdehydes (MDA) accumulation was monitored. Metallothionein protein level was assessed as a specific response to heavy metals. DNA alteration was achieved using MNi frequency in the investigated tissues. Finally, the evaluation of gene expression levels of CAT, GST, mt1, mt4, P53, bcl2, caspase3 and DNA-ligase was performed. Our data showed the highest loads of Cd, Cu, Zn and Pb in tissues of animals from site 3, being more pronounced in kidney. Biochemical data suggested a significant increase in antioxidant enzymes activities in all sites respect to control except in site 3 were CAT and GST were inhibited. DNA alteration was observed in all tissues being very pronounced in animals from site 3. Overall, transcriptomic data showed that genes involved in apoptosis were up-regulated in animals exposed to the most contaminated soils. Our data suggest that chicken and selected biomarkers offer a suitable model for biomonitoring assessment of heavy metals transfer through the food web in mining sites. Finally, the obtained results of heavy metals accumulation and related alterations should be carefully considered in view of the controversial relationship between distribution and toxicology of contaminants in exposed organisms.
Show more [+] Less [-]Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators Full text
2020
Parviainen, Annika | Papaslioti, Evgenia Maria | Casares Porcel, Manuel | Garrido, Carlos J.
Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators Full text
2020
Parviainen, Annika | Papaslioti, Evgenia Maria | Casares Porcel, Manuel | Garrido, Carlos J.
We have studied the metal air pollution trends in a medium-sized Spanish city suffering from traffic emission using in-situ lichen Xanthoria parietina as a bioindicator. The large scale sampling included 97 samples from urban, metropolitan and remote control areas of Granada that were analyzed by Inductively Coupled Plasma-Mass Spectrometry. Enrichment factor of Sb exhibited severe anthropogenic enrichment, whereas Cu and Sb showed significantly higher median values in the urban areas with respect to metropolitan areas. Additionally, bioaccumulation ratios of V, Cr, Ni, Cu, Zn, Cd, Sb, and Pb —associated to exhaust and non-exhaust traffic emissions— enabled us to delineate hot spots of metal(loid) accumulation in the main accesses to the city, characterized by dense traffic and copious traffic jams. To distinguish non-exhaust emissions, we studied the spatial distribution of the Cu:Sb ratio —a tracer of brake wear— highlighting the surroundings of the highway and the main traffic accesses to the city likely due to sudden hard braking and acceleration during frequent traffic jams. Our study shows that the metal(loid) contents in lichens are excellent proxies for non-exhaust traffic emissions and that their contribution to the metal(loid) air pollution in Granada is more significant than previously thought.
Show more [+] Less [-]Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators Full text
2020
Parviainen, Annika Jenni Johana | Papaslioti, Evgenia-Maria | Casares Porcel, Manuel | Garrido, Carlos Jesús
Dr. A. Parviainen acknowledges the ‘Juan de la Cierva —Incorporación’ (IJCI-2016-27412) Fellowship funded by the Spanish Ministry of Economy, Industry, and Competitiveness (MEIC). C.J. Garrido received funding from the “Junta de Andalucía” research grant RNM-131. Fellowships, research and infrastructure grants supporting this research have been (co)funded by the European Regional Development Fund (ERFD) and the European Social Fund (ESF) of the European Commission. | We have studied the metal air pollution trends in a medium-sized Spanish city suffering from traffic emission using in-situ lichen Xanthoria parietina as a bioindicator. The large scale sampling included 97 samples from urban, metropolitan and remote control areas of Granada that were analyzed by Inductively Coupled Plasma-Mass Spectrometry. Enrichment factor of Sb exhibited severe anthropogenic enrichment, whereas Cu and Sb showed significantly higher median values in the urban areas with respect to metropolitan areas. Additionally, bioaccumulation ratios of V, Cr, Ni, Cu, Zn, Cd, Sb, and Pb —associated to exhaust and non-exhaust traffic emissions— enabled us to delineate hot spots of metal(loid) accumulation in the main accesses to the city, characterized by dense traffic and copious traffic jams. To distinguish non-exhaust emissions, we studied the spatial distribution of the Cu:Sb ratio —a tracer of brake wear— highlighting the surroundings of the highway and the main traffic accesses to the city likely due to sudden hard braking and acceleration during frequent traffic jams. Our study shows that the metal(loid) contents in lichens are excellent proxies for non-exhaust traffic emissions and that their contribution to the metal(loid) air pollution in Granada is more significant than previously thought | Spanish Ministry of Economy, Industry, and Competitiveness (IJCI-2016-27412) | Junta de Andalucía RNM-131 | European Regional Development Fund (ERFD) | European Social Fund (ESF)
Show more [+] Less [-]Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas Full text
2020
García-Galán, María Jesús | Monllor-Alcaraz, Luis Simón | Postigo, Cristina | Uggetti, Enrica | López de Alda, Miren | Díez-Montero, Rubén | García, Joan
Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas Full text
2020
García-Galán, María Jesús | Monllor-Alcaraz, Luis Simón | Postigo, Cristina | Uggetti, Enrica | López de Alda, Miren | Díez-Montero, Rubén | García, Joan
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
Show more [+] Less [-]Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas Full text
2020
García Galán, María Jesús | Monllor Alcaraz, Luis Simon | Postigo Rebollo, Cristina | Uggetti, Enrica | López de Alda Villaizan, Miren | García Serrano, Joan | Díez Montero, Rubén | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental | Universitat Politècnica de Catalunya. GEMMA - Grup d'Enginyeria i Microbiologia del Medi Ambient
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions. | This research was funded by European Union's Horizon 2020 research and innovation program within the framework of the INCOVER project (GA 689242) and WATERPROTECT project (727450); by the Spanish Ministry of Science, Innovation and Universities, the Research National Agency (AEI), and the European Regional Development Fund (FEDER) within the project AL4BIO (RTI2018-099495-B-C21), and by the Government of Catalonia (Consolidated Research Group 2017 SGR 01404-Water and Soil Quality Unit). M.J. García-Galán, E. Uggetti and R. Díez-Montero would like to thank the Spanish Ministry of Economy and Competitiveness for their research grants (IJCI-2017-34601, RYC2018-025514-I and FJCI-2016-30997, respectively). | Peer Reviewed | Postprint (author's final draft)
Show more [+] Less [-]Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas Full text
2020
García-Galán, M. Jesús | Monllor-Alcaraz, Luis Simón | Postigo, Cristina | Uggetti, Enrica | López de Alda, Miren | García, Joan | Díez-Montero, Rubén | European Commission | Postigo, Cristina [0000-0002-7344-7044] | López De Alda, Miren [0000-0002-9347-2765]
It is possible to consult this version in open access at the following web address: arXiv:2011.11546 | The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in July to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions. | This research was funded by European Union's Horizon 2020 research and innovation program within the framework of the INCOVER project (GA 689242) and WATERPROTECT project (727450); by the Spanish Ministry of Science, Innovation and Universities, the Research National Agency (AEI), and the European Regional Development Fund (FEDER) within the project AL4BIO (RTI2018-099495-B-C21), and by the Government of Catalonia (Consolidated Research Group 2017 SGR 01404-Water and Soil Quality Unit). M.J. García-Galán, E. Uggetti and R. Díez-Montero would like to thank the Spanish Ministry of Economy and Competitiveness for their research grants (IJCI-2017-34601, RYC2018-025514-I and FJCI-2016-30997, respectively). | Peer reviewed
Show more [+] Less [-]