Refine search
Results 241-250 of 7,280
Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China
2022
Song, Zhihao | Chen, Bin | Huang, Jianping
PM₂.₅ (fine particulate matter with aerodynamics diameter <2.5 μm) is the most important component of air pollutants, and has a significant impact on the atmospheric environment and human health. Using satellite remote sensing aerosol optical depth (AOD) to explore the hourly ground PM₂.₅ distribution is very helpful for PM₂.₅ pollution control. In this study, Himawari-8 AOD, meteorological factors, geographic information, and a new deep forest model were used to construct an AOD-PM₂.₅ estimation model in China. Hourly cross-validation results indicated that estimated PM₂.₅ values were consistent with the site observation values, with an R² range of 0.82–0.91 and root mean square error (RMSE) of 8.79–14.72 μg/m³, among which the model performance reached the optimum value between 13:00 and 15:00 Beijing time (R² > 0.9). Analysis of the correlation coefficient between important features and PM₂.₅ showed that the model performance was related to AOD and affected by meteorological factors, particularly the boundary layer height. Deep forest can detect diurnal variations in pollutant concentrations, which were higher in the morning, peaked at 10:00–11:00, and then began to decline. High-resolution PM₂.₅ concentrations derived from the deep forest model revealed that some cities in China are seriously polluted, such as Xi ‘an, Wuhan, and Chengdu. Our model can also capture the direction of PM₂.₅, which conforms to the wind field. The results indicated that due to the combined effect of wind and mountains, some areas in China experience PM₂.₅ pollution accumulation during spring and winter. We need to be vigilant because these areas with high PM₂.₅ concentrations typically occur near cities.
Show more [+] Less [-]Synthesis and applications of bismuth-impregnated biochars originated from spent coffee grounds for efficient adsorption of radioactive iodine: A mechanism study
2022
Kwak, Jinwoo | Lee, Sang-Ho | Shin, Jaegwan | Lee, Yong-Gu | Kim, Sangwon | Son, Changgil | Ren, Xianghao | Shin, Jae-Ki | Park, Yongeun | Chon, Kangmin
The adsorption of radioactive iodine, which is capable of presenting high mobility in aquatic ecosystems and generating undesirable health effects in humans (e.g., thyroid gland dysfunction), was comprehensively examined using pristine spent coffee ground biochar (SCGB) and bismuth-impregnated spent coffee ground biochar (Bi@SCGB) to provide valuable insights into the variations in the adsorption capacity and mechanisms after pretreatment with Bi(NO₃)₃. The greater adsorption of radioactive iodine toward Bi@SCGB (adsorption capacity (Qₑ) = 253.71 μg/g) compared to that for SCGB (Qₑ = 23.32 μg/g) and its reduced adsorption capability at higher pH values provide evidence that the adsorption of radioactive iodine with SCGB and Bi@SCGB is strongly influenced by the presence of bismuth materials and the electrostatic repulsion between their negatively charged surfaces and negatively charged radioactive iodine (IO₃⁻). The calculated R² values for the adsorption kinetics and isotherms support that chemisorption plays a crucial role in the adsorption of radioactive iodine by SCGB and Bi@SCGB in aqueous phases. The adsorption of radioactive iodine onto SCGB was linearly correlated with the contact time (h¹/²), and the diffusion of intra-particle predominantly determined the adsorption rate of radioactive iodine onto Bi@SCGB (Cₛₜₐgₑ II (129.20) > Cₛₜₐgₑ I (42.33)). Thermodynamic studies revealed that the adsorption of radioactive iodine toward SCGB (ΔG° = −8.47 to −7.83 kJ/mol; ΔH° = −13.93 kJ/mol) occurred exothermically and that for Bi@SCGB (ΔG° = −15.90 to −13.89 kJ/mol; ΔH° = 5.88 kJ/mol) proceeded endothermically and spontaneously. The X-ray photoelectron spectroscopy (XPS) analysis of SCGB and Bi@SCGB before and after the adsorption of radioactive iodine suggest the conclusion that the change in the primary adsorption mechanism from electrostatic attraction to surface precipitation upon the impregnation of bismuth materials on the surfaces of spent coffee ground biochars is beneficial for the adsorption of radioactive iodine in aqueous phases.
Show more [+] Less [-]Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants
2022
Hoang, Son A. | Lamb, Dane | Sarkar, Binoy | Seshadri, Balaji | Lam, Su Shiung | Vinu, Ajayan | Bolan, Nanthi S.
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.
Show more [+] Less [-]Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn
2022
Iyagbaye, Louis | Reichelt-Brushett, Amanda | Benkendorff, Kirsten
Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25–0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.
Show more [+] Less [-]Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil
2022
Habitat loss and fragmentation together represent the most significant threat to the world's biodiversity. In order to guarantee the survival of this diversity, the monitoring of bioindicators can provide important insights into the health of a natural environment. In this context, we used the comet assay and micronucleus test to evaluate the genotoxic susceptibility of 126 bats of eight species captured in soybean and sugarcane plantation areas, together with a control area (conservation unit) in the Cerrado savanna of central Brazil. No significant differences were found between the specimens captured in the sugarcane and control areas in the frequency of micronuclei and DNA damage (comet assay). However, the omnivore Phyllostomus hastatus had a higher frequency of nuclear abnormalities than the frugivore Carollia perspicillata in the sugarcane area. Insectivorous and frugivorous bats presented a higher frequency of genotoxic damage than the nectarivores in the soybean area. In general, DNA damage and micronuclei were significantly more frequent in agricultural environments than in the control area. While agricultural development is an economic necessity in developing countries, the impacts on the natural landscape may result in genotoxic damage to the local fauna, such as bats. Over the medium to long term, then DNA damage may have an increasingly negative impact on the wellbeing of the local species.
Show more [+] Less [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
Show more [+] Less [-]Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms
2022
Wang, Dali | Ning, Qing | Deng, Ziqing | Zhang, Meng | Yau, Ching
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants’ ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Show more [+] Less [-]Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications
2022
Santini, G. | Acconcia, S. | Napoletano, M. | Memoli, V. | Santorufo, L. | Maisto, G.
Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred.
Show more [+] Less [-]Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks
2022
Ren, Helong | Su, Peixin | Kang, Wei | Ge, Xiang | Ma, Shengtao | Shen, Guofeng | Chen, Qiang | Yu, Yingxin | An, Taicheng
Soil polycyclic aromatic hydrocarbons (PAHs) generated from industrial processes are highly spatially heterologous, with limited quantitative studies on their main influencing factors. The present study evaluated the soil PAHs in three types of industrial parks (a petrochemical industrial park, a brominated flame retardant manufacturing park, and an e-waste dismantling park) and their surroundings. The total concentrations of 16 PAHs in the parks were 340–2.43 × 10³, 26.2–2.63 × 10³, and 394–2.01 × 10⁴ ng/g, which were significantly higher than those in the surrounding areas by 1–2 orders of magnitude, respectively. The highest soil PAH contamination was observed in the e-waste dismantling park. Nap can be considered as characteristic pollutant in the petrochemical industrial park, while Phe in the flame retardant manufacturing park and e-waste dismantling park. Low molecular weight PAHs (2–3 rings) predominated in the petrochemical industrial park (73.0%) and the surrounding area of brominated flame retardant manufacturing park (80.3%). However, high molecular weight PAHs (4–6 rings) were enriched in the other sampling sites, indicating distinct sources and determinants of soil PAHs. Source apportionment results suggested that PAHs in the parks were mainly derived from the leakage of petroleum products in the petroleum manufacturing process and pyrolysis or combustion of fossil fuels. Contrarily, the PAHs in the surrounding areas could have been derived from the historical coal combustion and traffic emissions. Source emissions, wind direction, and local topography influenced the PAH spatial distributions.
Show more [+] Less [-]Analysis of environmental chemical mixtures and nonalcoholic fatty liver disease: NHANES 1999–2014
2022
Li, Wei | Xiao, Haitao | Wu, Hong | Pan, Cheng | Deng, Ke | Xu, Xuewen | Zhang, Yange
We aimed to investigate the associations between chemical mixtures and the risk of nonalcoholic fatty liver disease (NAFLD) in this study. A total of 127 exposure analytes within 13 chemical mixture groups were included in the current analysis. Associations between chemical mixture exposure and prevalence of NAFLD were examined using weighted quantile sum (WQS) regressions. NAFLD was diagnosed by hepatic steatosis index (HSI) and US fatty liver index (USFLI). In USFLI-NAFLD cohort, chemical mixtures positively associated with NAFLD development included urinary metals (OR: 1.10, 95% CI: 1.04–1.16), urinary perchlorate, nitrate and thiocyanate (OR: 1.06, 95% CI: 1.02–1.11), urinary pesticides (OR: 1.24, 95% CI: 1.09–1.40), urinary phthalates (OR: 1.18, 95% CI: 1.09–1.28), urinary polyaromatic hydrocarbons (PAHs) (OR: 1.08, 95% CI: 1.03–1.14), and urinary pyrethroids, herbicides, and organophosphate pesticides metabolites (OR: 1.32, 95% CI: 1.15–1.51). All of the above mixtures were also statistically significant in WQS regressions in the HSI-NAFLD cohort. Besides, some chemical mixtures were only significant in HSI-NAFLD cohort including urinary arsenics (OR: 1.07, 95% CI: 1.02–1.12), urinary phenols (OR: 1.10, 95% CI: 1.02–1.19) and blood polychlorinated dibenzo-p-dioxins (OR: 1.10, 95% CI: 1.03–1.17). Three types of chemical mixtures only showed significant associations in the healthy lifestyle score (HLS) of 3–4 subgroup, including urinary perchlorate, nitrate and thiocyanate, urinary PAHs and blood polychlorinated dibenzo-p-dioxins. In conclusion, the exposure of specific types of chemical mixtures were associated with elevated NAFLD risk, and the effects of some chemical mixtures on NAFLD development exhibited differences in participants with different lifestyles.
Show more [+] Less [-]