Refine search
Results 2421-2430 of 4,309
Sorption and desorption of organophosphate esters with different hydrophobicity by soils Full text
2017
Cristale, Joyce | Álvarez-Martín, Alba | Rodríguez-Cruz, Sonia | Sánchez-Martín, María J. | Lacorte, Silvia
Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (Kₒw) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds’ physicochemical properties and the content and nature of soil OC in this process.
Show more [+] Less [-]Pilot testing model to uncover industrial symbiosis in Brazilian industrial clusters Full text
2017
Saraceni, Adriana Valélia | Resende, Luis Mauricio | de Andrade Júnior, Pedro Paulo | Pontes, Joseane
The main objective of this study was to create a pilot model to uncover industrial symbiosis practices in Brazilian industrial clusters. For this purpose, a systematic revision was conducted in journals selected from two categories of the ISI Web of Knowledge: Engineering, Environmental and Engineering, Industrial. After an in-depth revision of literature, results allowed the creation of an analysis structure. A methodology based on fuzzy logic was applied and used to attribute the weights of industrial symbiosis variables. It was thus possible to extract the intensity indicators of the interrelations required to analyse the development level of each correlation between the variables. Determination of variables and their weights initially resulted in a framework for the theory of industrial symbiosis assessments. Research results allowed the creation of a pilot model that could precisely identify the loopholes or development levels in each sphere. Ontology charts for data analysis were also generated. This study contributes to science by presenting the foundations for building an instrument that enables application and compilation of the pilot model, in order to identify opportunity to symbiotic development, which derives from “uncovering” existing symbioses.
Show more [+] Less [-]Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal Full text
2017
Laaksonen, Petteri | Sinkkonen, Aki | Zaitsev, Gennadi | Mäkinen, Esa | Grönroos, Timo | Romantschuk, Martin
A traditional sand filter for treatment of household wastewater was constructed in the fall of 2012 at Biolinja 12, Turku, Finland. Construction work was led and monitored by an authorized wastewater treatment consultant. The filter was placed on a field bordered by open ditches from all sides in order to collect excess rain and snowmelt waters. The filter was constructed and insulated from the environment so that all outflowing water was accounted for. Untreated, mainly municipal, wastewater from Varissuo suburb was pumped from a sewer separately via three septic tanks (volume = 1 m³ each) into the filters. Normally, wastewater was distributed to ground filters automatically according to pre-programmed schedule. Initially, the daily flow was 1200 L day⁻¹ to reflect the average organic load of a household of five persons (load: ca 237 g day⁻¹ BOD; 73 g day⁻¹ total N; and 10.4 g day⁻¹ total P). Later in the test, the flow rate was decreased first to 900 and then to 600 L day⁻¹ to better reflect the average volume produced by five persons. Volumes of inlet wastewater as well as treated water were monitored by magnetic flow meters. Samples were withdrawn from the inlet water, from the water entering the filters after the third septic tank, and from the outflowing water. After an initial adaption time, the reductions in BOD and chemical oxygen demand were constantly between 92 and 98%, showing that the biological degradation process in the filters functioned optimally and clearly comply with the national and EU standards. The reduction in total nitrogen and total phosphorus, however, reached required levels only during the first months of testing, apparently when buildup of microbial biomass was still ongoing. After this initial period of 3 months showing satisfactory reduction levels, the reduction of total nitrogen varied between 5 and 25% and total phosphorus mostly between 50 and 65%. Nitrification was efficient in the filter, but as indicated by high nitrate levels and poor nitrogen reductions, denitrification was inefficient or absent. During the winter period, the temperature in the filter dropped to near freezing, but at all time points, the flow of water was unaffected by freezing. During snowmelt and heavy rain, occasional flooding was observed. Such situations may lead to dilution rather than purification of the wastewater. In conclusion, the sand filter tested worked well for reduction of the organic load in municipal wastewater but failed to sufficiently reduce nitrogen and phosphorus levels.
Show more [+] Less [-]A preliminary investigation of noise impact within metro stations in the urban city of Guangzhou, China Full text
2017
Wang, Peng | Wang, Yimin | Zou, Chao | Guo, Jixing
The noise in the metro station is synthesized from a variety of different noise sources. Excessive noise exposure will bring serious impacts on humans’ health. To alleviate the shortage of the urban land, most metro stations are planning to develop convenience stores and shopping malls. In order to evaluate the potential noise impact on humans’ comfort in the metro stations, this study selected four representative stations of Guangzhou Metro Line 1 to carry out a preliminary questionnaire survey of 226 respondents for the perception and perform a noise measurement. Additionally, platform screen doors as a potential method for noise mitigation were examined. The results show that the noise caused by trains was dominant in the metro stations; however, the noise impact by public broadcast and passengers cannot be ignored. The noise levels of the transfer stations were obviously greater than the normal stations, especially during the peak hours. In addition, people in the metro stations have potential exposure to noise that the noise levels exceed the criteria limit of China, which would bring discomfort for humans; however, the normal activities of people would not be impacted. The platform screen doors should be further improved or relevant noise mitigation methods should be taken into account to reduce the noise level within the criteria limit.
Show more [+] Less [-]Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method Full text
2017
Wong, Y. K. | Ho, Y. H. | Leung, H.-M. | Ho, Dominic K. C. | Yau, Y. H. | Yung, K. K. L.
This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.
Show more [+] Less [-]The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings Full text
2017
Zhou, Jian | Jiang, Zeping | Ma, Jie | Yang, Lifeng | Wei, Yuan
In this experiment, the effects of different lead (Pb) concentrations (0, 200, 600, 1000, 1400 mg kg⁻¹) on photosynthesis and chlorophyll fluorescence in Robinia pseudoacacia seedlings were examined. As Pb concentration increased, chlorophyll a, chlorophyll b, total chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance (g ₛ), and mesophyll intercellular carbon dioxide concentration were gradually reduced. Maximal photochemical efficiency, photochemical quenching, and quantum yield also decreased. However, the initial fluorescence and nonphotochemical quenching gradually increased. Chloroplasts swelled owing to local plasmolysis and lost most of their starch content, and their thylakoid lamellae gradually became disordered and loosely packed. When the chloroplast envelope was lost under high Pb stress (≥1000 mg kg⁻¹), lipid globules were released into the surrounding mesophyll cell. Multiple regression analysis showed that g ₛ and inactivity of the PSII reaction center had the greatest effect on photosynthetic function, whereas inhibition of electron transport had minimal effects on black locust seedlings under Pb stress.
Show more [+] Less [-]Pollution-induced community tolerance in benthic macroinvertebrates of a mildly lead-contaminated lake Full text
2017
Oguma, Andrew Y. | Klerks, Paul L.
Pollution-induced community tolerance (PICT) has been used to demonstrate effects of sediment contamination on microbes and meiofauna. Our study explored the potential to detect PICT in benthic macroinvertebrates of a lake with long-term mild lead (Pb) contamination. We collected macrobenthos from two areas in Caddo Lake, Texas, a control area (CO) with a mean sediment Pb level of 11 μg/g and Goose Prairie (GP) where sediment Pb levels averaged 74 μg/g. Upon return to the laboratory, we exposed macroinvertebrates to a lethal lead concentration and assessed 48-h mortality. Mortality of CO macrobenthos was significantly higher than that of GP macrobenthos, providing evidence that these communities differed in their tolerance to lead. A comparison of macrobenthos community composition between the areas showed that the GP macrobenthos lacked metal-sensitive taxa such as gastropods and amphipods (which were present at CO). Similarly, a higher proportion of the GP benthos belonged to metal-tolerant taxa such as isopods and chironomids. Thus, changes in community composition appeared to be at least partly responsible for differences in community tolerance. Our results showed that a sediment Pb concentration below effect-based sediment quality guidelines had a measurable impact on macrobenthos, thus demonstrating that results from single-species toxicity tests may underestimate impacts on communities. This study also confirms that the PICT approach with macroinvertebrates is a feasible and potentially powerful approach for detecting contaminant impacts.
Show more [+] Less [-]Leaching of mercury from seal carcasses into Antarctic soils Full text
2017
Zvěřina, Ondřej | Coufalík, Pavel | Brat, Kristián | Červenka, Rostislav | Kuta, Jan | Mikeš, Ondřej | Komárek, Josef
More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 μg/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 μg/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.
Show more [+] Less [-]Numerical simulation of reactive extraction of benzoic acid from wastewater via membrane contactors Full text
2017
Ghadiri, Mehdi | Shirazian, Saeed
Membrane-based non-dispersive solvent extraction is used in many chemical processes due to its significant benefits such as straightforward scale-up and low energy consumption. A mechanistic model was developed to predict recovery of benzoic acid (BA) from wastewater using membrane contactors. Model equations were derived for benzoic acid transport in the membrane module, and solved using FEM. The model findings were compared with experimental results, and an average deviation of 4% was observed between experimental and simulation results. Simulations showed that change in organic phase flowrate and initial concentration of BA does not have considerable effect on the removal efficiency of benzoic acid. In addition, increasing feed flowrate leads to the enhancement of convective mass transfer flux in the tube side of membrane contactor which decreases removal efficiency of benzoic acid.
Show more [+] Less [-]Identification of strain isolated from dates (Phœnix dactylifera L.) for enhancing very high gravity ethanol production Full text
2017
Djelal, Hayet | Chniti, Sofien | Jemni, Monia | Weill, Amélie | Sayed, Walaa | Amrane, Abdeltif
Ethanol production from by-products of dates in very high gravity was conducted in batch fermentation using two yeasts, Saccharomyces cerevisiae and Zygosaccharomyces rouxii, as well as a native strain: an osmophilic strain of bacteria which was isolated for the first time from the juice of dates (Phoenix dactylifera L.). The phylogenetic analysis based on the 16S ribosomal RNA and gyrB sequence and physiological analysis indicated that the strain identified belongs to the genus of Bacillus, B. amyloliquefaciens. The ethanol yields produced from the syrup of dates (175 g L⁻¹ and 360 g L⁻¹ of total sugar) were 40.6% and 29.5%, respectively. By comparing the ethanol production by the isolated bacteria to that obtained using Z. rouxii and S. cerevisiae, it can be concluded that B. amyloliquefaciens was suitable for ethanol production from the syrup of dates and can consume the three types of sugar (glucose, fructose, and sucrose). Using Z. rouxii, fructose was preferentially consumed, while glucose was consumed only after fructose depletion. From this, B. amyloliquefaciens was promising for the bioethanol industry. In addition, this latter showed a good tolerance for high sugar concentration (36%), allowing ethanol production in batch fermentation at pH 5.0 and 28 °C in date syrup medium. Promising ethanol yield produced to sugar consumed were observed for the two osmotolerant microorganisms, Z. rouxii and B. amyloliquefaciens, nearly 32–33%, which were further improved when they were cocultivated, leading to an ethanol to glucose yield of 42–43%.
Show more [+] Less [-]