Refine search
Results 2431-2440 of 4,033
Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria
2016
Li, Shan-Wei | Zhang, Xing | Sheng, Guo-Ping
Microbial extracellular polymeric substances (EPS) excreted from microorganisms were a complex natural biological polymer mixture of proteins and polysaccharides, which played an important roles in the transport of metals, such as Ag⁺. Electroactive bacteria, is an important class of environmental microorganisms, which can use iron or manganese mineral as terminal electron acceptors to generate energy for biosynthesis and cell maintenance. In this work, the EPS extracted of three electroactive bacteria (Shewanella oneidensis, Aeromonas hydrophila, and Pseudomonas putida) were used for reducing Ag⁺ and forming silver nanoparticles (AgNPs). Results showed that all the three microbial EPS could reduce Ag⁺ to AgNPs. The formed AgNPs were characterized in depth by the UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The main components in the EPS from the three electroactive bacteria were analyzed. The presence of cytochrome c in these EPS was confirmed, and they were found to contribute to the reduction of Ag⁺ to AgNPs. The results indicated that the EPS of electroactive bacteria could act as a reductant for AgNPs synthesis and could provide new information to understand the fate of metals and their metal nanoparticles in the natural environments.
Show more [+] Less [-]Traffic tracers in a suburban location in northern Spain: relationship between carbonaceous fraction and metals
2016
Megido, L. | Negral, L. | Castrillón, L. | Marañón, E. | Fernández-Nava, Y. | Suárez-Peña, B.
PM10 and black smoke were monitored at a suburban sampling station located in the northern Spanish city of Gijón. Thirty-two metals and total carbon (TC) (i.e., organic carbon (OC) and elemental carbon (EC)) were analyzed over a year. The study of air-mass origin based on 5-day back trajectories was carried out to assess its influence on the recovery data. Different strategies were implemented to infer the influence of traffic in the area. On average, TC accounted for 29 % of the PM10 fraction, with OC forming 77 % of this TC. The influence of traffic was clearly reduced during intense Atlantic advection episodes, when OC and EC decreased up to 0.39 and 0.22 μg C/m³, respectively. In contrast, the highest values were reported during regional episodes, exceeding 10 μg C/m³ of OC and 2 μg C/m³ of EC. The correlation between EC and OC was found to notably improve when considering the days with high traffic flow (from R ² = 0.46 to R ² = 0.74). This pattern was also reproduced by black smoke and EC (from R ² = 0.49 to R ² = 0.59). Cu and Sn were found to be reliable traffic tracers given their high dependence on EC (R ² = 0.82 and R ² = 0.79, respectively). Nevertheless, Sn, Ba, and Sb showed a better correlation with Cu than EC, suggesting a common origin. In the case of Sn, R ² improved from 0.79 to 0.91. The Cu/Sb ratio had a mean value of 6.6 which agrees with diagnostic criterions for brake wear particles. The relationships and ratios between EC, Cu, Sb, Sn, Ba, and Bi pointed out to non-exhaust emissions, playing a significant role in the chemical composition of PM10. Brake wear was presented as the most likely origin for Cu, Sb, and Sn.
Show more [+] Less [-]Metal-based optical chemosensors for CN− detection
2016
Bencini, Andrea | Lippolis, Vito
This critical review focuses on recent advances (2010–2015) in the detection of cyanide anion via metal-based optical chemosensors in which a change in colour and/or fluorescence intensity (or emission wavelength) of a molecular metal complex is determined by the direct interaction of the metal centre with this anion.
Show more [+] Less [-]Feasibility of using a translucid inorganic hydrogel to build a biosensor using immobilized algal cells
2016
Durrieu, Claude | Ferro, Yannis | Perullini, Mercedes | Gosset, Antoine | Jobbágy, Matías | Bilmes, Sara A.
Anthropic activities generate contaminants, as pesticides and other pollutants, in the aquatic environment which present a real threat to ecosystems and human health. Thus, monitoring tools become essential for water managers to detect these chemicals before the occurrence of adverse effects. In this aim, algal cell biosensors, based on photosystem II activity measurement, have been designed for several years in previous studies. In this work, we study a new immobilization technique of algal cells in the aim of improving the performance of these biosensors. Immobilization was here achieved by encapsulation in a hybrid alginate/silica translucid hydrogel. The feasibility of this process was here assessed, and the biosensor designed was tested on the detection of chemicals in urban rainwaters.
Show more [+] Less [-]Trends in the enantiomeric composition of polychlorinated biphenyl atropisomers in human breast milk
2016
Konishi, Yoshimasa | Kakimoto, Kensaku | Nagayoshi, Haruna | Nakano, Takeshi
For the precise estimation of the risk to human health caused by persistent organic pollutants (POPs), it is important to discuss enantiomer fraction value (EF value) because it is reported that behaviors such as stability and toxicity of enantiomers are quite different in human body. Among POPs, polychlorinated biphenyl (PCB) is known as one of the most persistent compounds in human breast milk samples. The main exposure source of PCB for human body is mostly from food especially in seafood. The contamination of fish and shellfish has been a serious problem for the Japanese, who consume a large amount of fish in their diet. PCBs have 19 congeners which are chlorine-substituted in 3- or 4- ortho positions are known to have enantiomers. In this study, we analyzed PCB 183 (2,2′,3,4,4′,5′,6-hepta CB) in human breast milk and fish samples enantioselectively and revealed the time trends of the EF value. Though EF value of PCB 183 in fish samples sustained close to racemate (EF = 0.5) from 1982 to 2012, that in breast milk increased over time. This fact indicates that (+)-PCB-183 has greater bioaccumulation potential than (-)-PCB-183 in human body; therefore, the toxicity of (+)-PCB-183 should be emphasized.
Show more [+] Less [-]Accumulation patterns of Cr in Callitriche organs—qualitative and quantitative analysis
2016
Augustynowicz, Joanna | Gajewski, Zbigniew | Kostecka-Gugała, Anna | Wróbel, Paweł | Kołton, Anna
The aims of this study were both the qualitative and quantitative analysis of chromium accumulation in the shoots of Callitriche cophocarpa. This globally distributed, submersed macrophyte exhibits outstanding Cr phytoremediation capacity in an aquatic environment. Cr was applied separately for 7 days at two stable forms as Cr(VI) and Cr(III), known from their diverse physicochemical properties and toxicities. The maps of Cr depositions in young leaves, mature leaves, and stems were obtained by micro X-ray fluorescence spectroscopy (μXRF). The detailed analysis of XRF maps was done based on Image-Pro PLUS (Media Cybernetics) software. Cr was accumulated either in trichomes or vascular bundles in respect to the element speciation and the plant organ. The concentration of Cr significantly increased in the following order: Cr(VI) mature leaves < Cr(VI) young leaves = Cr(VI) stems < Cr(III) young leaves ≤ Cr(III) mature leaves ≤ Cr(III) stems. The observed differences in distribution and accumulation of Cr were correlated with the different reduction potential of Cr(VI) by particular plant organs. The reduction of Cr(VI) is considered the main detoxification mechanism of the highly toxic Cr(VI) form. The unique L-band electron resonance spectrometer (L-band EPR) was applied to follow the reduction of Cr(VI) to Cr(III) in the studied material.
Show more [+] Less [-]GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity
2016
Suman, T. Y. | Rajasree, S. R Radhika | Jayaseelan, C. | Mary, R Regina | Gayathri, S. | Aranganathan, L. | Remya, R. R.
Green synthesis of silver nanoparticles (AgNPs) using Hybanthus enneaspermus extract at room temperature that act as a reducing agent as well as capping agent has been investigated. The synthesized AgNPs were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), zeta potential, and dynamic light scattering (DLS) transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX). The silver surface plasmon resonance was observed at 420 nm in the UV–visible spectrum. XRD peaks were observed at 2θ values in 38.20°, 44.40°, 64.60°, and 77.50° which are indexed as (111), (200), (220), and (311) bands of face-centered cubic (fcc) structures of silver. FTIR revealed the AgNPs were capped with plant compounds of alcohol, phenols, carbonyl, amines, and amide functional groups. TEM image shows that the particles were of spherical, hexagonal, and triangular in shape, and the size range was 16–26 nm. Further, DLS exhibits the average size of 25.2 nm and the zeta values were measured (−27.1 mV) which proves the stability of the AgNPs. The conversion of Ag⁺ ions into Ag⁰ was calculated using inductively coupled plasma atomic emission spectroscopy (ICP-MS) and was found to be 96 %. The biosynthesized AgNPs showed the larvicidal activity with the LC₅₀ values of 17.24 and 13.12 mg/L against the fourth-instar larvae of Anopheles subpictus and Culex quinquefasciatus, respectively. The GC-MS analysis of the plant extract showed that 39 bioactive phytochemical compounds have been found to possess a wide range of activities, which may help in the protection against incurable diseases.
Show more [+] Less [-]Benthic ecosystem functioning in the severely contaminated Mar Piccolo of Taranto (Ionian Sea, Italy): focus on heterotrophic pathways
2016
Franzo, A. | Auriemma, R. | Nasi, F. | Vojvoda, J. | Pallavicini, A. | Cibic, T. | Del Negro, P.
The benthic ecosystem functioning is a rarely applied holistic approach that integrates the main chemical and biological features of the benthic domain with the key processes responsible for the flux of energy and C through the system. For the first time, such conceptual model, with an emphasis on the heterotrophic pathways, has been applied to the sediments at four stations within one of the most polluted coastal areas in Italy: the Mar Piccolo of Taranto. The functioning of the benthic ecosystem was different according to the investigated site. Nearby the military arsenal, i.e., the main source of organic contaminants and heavy metals, the system seemed inhibited at all the investigated structural and functional levels. Slow microbial processes of C reworking together with very limited densities of benthic fauna suggested a modest transfer of C both into a solid microbial loop and to the higher trophic levels. On the other hand, the ingression of marine water through the “Navigabile” channel seemed to stimulate the organic matter degradation and, consequently, the proliferation of meiofauna and macrofauna. In the innermost part of the basin, the system functioning, to some extent, is less impacted by contaminants and more influenced by mussel farms. The organic matter produced by these bivalves fueled faster C reworking by benthic prokaryotes and enhanced the proliferation of filter feeders.
Show more [+] Less [-]Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal(loid) contamination
2016
Fidalgo, Cátia | Henriques, Isabel | Rocha, Jaqueline | Tacão, Marta | Alves, Arthur
Halimione portulacoides is abundant in salt marshes, accumulates mercury (Hg), and was proposed as useful for phytoremediation and pollution biomonitoring. Endophytic bacteria promote plant growth and provide compounds with industrial applications. Nevertheless, information about endophytic bacteria from H. portulacoides is scarce. Endophytic isolates (n = 665) were obtained from aboveground and belowground plant tissues, from two Hg-contaminated sites (sites E and B) and a noncontaminated site (site C), in the estuary Ria de Aveiro. Representative isolates (n = 467) were identified by 16S rRNA gene sequencing and subjected to functional assays. Isolates affiliated with Proteobacteria (64 %), Actinobacteria (23 %), Firmicutes (10 %), and Bacteroidetes (3 %). Altererythrobacter (7.4 %), Marinilactibacillus (6.4 %), Microbacterium (10.2 %), Salinicola (8.8 %), and Vibrio (7.8 %) were the most abundant genera. Notably, Salinicola (n = 58) were only isolated from site C; Hoeflea (17), Labrenzia (22), and Microbacterium (67) only from belowground tissues. This is the first report of Marinilactibacillus in the endosphere. Principal coordinate analysis showed that community composition changes with the contamination gradient and tissue. Our results suggest that the endosphere of H. portulacoides represents a diverse bacterial hotspot including putative novel species. Many isolates, particularly those affiliated to Altererythrobacter, Marinilactibacillus, Microbacterium, and Vibrio, tested positive for enzymatic activities and plant growth promoters, exposing H. portulacoides as a source of bacteria and compounds with biotechnological applications.
Show more [+] Less [-]Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China
2016
Mao, Xiaoxuan | Yu, Zhousuo | Ding, Zhongyuan | Huang, Tao | Ma, Jianmin | Zhang, Gan | Li, Jun | Gao, Hong
Gas phase polycyclic aromatic hydrocarbons (PAHs) in Hexi Corridor, Northwest China were determined during heating and non-heating seasons, respectively, using passive air samplers. Polyurethane foam (PUF) disks were chosen as the sampling medium. Fifteen PAHs out of the 16 PAHs classified by the United States Environmental Protection Agency (U.S. EPA) were detected in this field sampling investigation. The atmospheric levels of sampled PAHs were higher at urban sites than that at rural sites among 14 sampling sites and increased during heating season. The highest concentration (11.34 ng m⁻³) was observed in Lanzhou during the heating season, the capital and largest industrial city of Gansu Province. PAH contamination in air was dominated by three aromatic ring congeners. Possible sources of PAHs were apportioned using PAH species ratios and the principle component analysis (PCA) combined with a multiple linear regression (MLR) method. Fossil fuel consumption was identified to be the predominant source of PAHs over Hexi Corridor, accounting for 43 % of the concentration of total (15) PAHs. Backward and forward trajectory and cluster analysis were also carried out to identify potential origins of PAHs monitored at several urban and rural sites. Lung cancer risk of local residents to gas phase PAHs via inhalation exposure throughout the province was found to be around a critical value of the lung cancer risk level at 10⁻⁶ recommended by the U.S. EPA risk assessment guideline.
Show more [+] Less [-]