Refine search
Results 2451-2460 of 3,197
Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition
2015
Wang, Jinzhi | Jiang, Xia | Zheng, Binghui | Niu, Yuan | Wang, Kun | Wang, Wenwen | Kardol, Paul
Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO₃ ⁻, SO₄ ²⁻, and Mn⁴⁺) can be utilized to suppress the reduction of Fe³⁺ under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl₃, MnO₂, and KNO₃ on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl₃ significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl₃, addition of MnO₂ has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO₃ ⁻ removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO₃ ⁻ on sediment P release. Our results indicated that FeCl₃ and MnO₂ could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl₃; large amounts of NO₃ ⁻ were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO₃ ⁻ removal increased with increasing algal density.
Show more [+] Less [-]Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects
2015
Sājid, Muḥammad | Shauqī, Ilyās | Basheer, Chanbasha | Tariq, Madiha | Daud Beureueh, Muhammad | Baig, Nadeem | Shehzad, Farrukh
Nanotechnology has revolutionized the world through introduction of a unique class of materials and consumer products in many arenas. It has led to production of innovative materials and devices. Despite of their unique advantages and applications in domestic and industrial sectors, use of materials with dimensions in nanometers has raised the issue of safety for workers, consumers, and human environment. Because of their small size and other unique characteristics, nanoparticles have ability to harm human and wildlife by interacting through various mechanisms. We have reviewed the characteristics of nanoparticles which form the basis of their toxicity. This paper also reviews possible routes of exposure of nanoparticles to human body. Dermal contact, inhalation, and ingestion have been discussed in detail. As very limited data is available for long-term human exposures, there is a pressing need to develop the methods which can determine short and long-term effects of nanoparticles on human and environment. We also discuss in brief the strategies which can help to control human exposures to toxic nanoparticles. We have outlined the current status of toxicological studies dealing with nanoparticles, accomplishments, weaknesses, and future challenges.
Show more [+] Less [-]Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli
2015
Cui, Daizong | Li, Guofang | Zhao, Dan | Zhao, Min
It is widely accepted that the addition of redox mediators increases the decolorization rates of azo dyes by bacterial strains under anaerobic conditions. However, little information exists about whether quinoid redox mediators can enhance the performance of aerobic azo dye decolorization. In the present study, quinone-mediated decolorization of different azo dyes by whole cells and cell extracts from the Escherichia coli strain CD-2 under aerobic conditions were investigated. The results demonstrated that reduction rates of different azo dyes were greatly increased when quinone compounds were used as redox mediators. Compared with menadione, 2-hydroxy-1,4-naphthoquinone (lawsone) was more effective at aiding azo dye degradation and the optimum concentration for lawsone is 0.1 mM. Strain CD-2 and the anthraquinone were co-immobilized by entrapment in different polymeric matrices. The co-immobilized beads exhibited good catalytic activity for azo dye degradation and kept stable during successive repeated experiments. The mechanism of the quinone-mediated reduction showed that although whole cells incubated with quinones could significantly increase the rate of decolorization of azo dyes, the quinone compounds did not directly promote azoreductase activity. According to the survey, this is the first report to confirm that the addition of quinoid redox mediators to bacteria increased decolorization under aerobic conditions.
Show more [+] Less [-]Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants
2015
Mnif, Inès | Mnif, Sami | Sahnoun, Rihab | Maktouf, Sameh | Ayedi, Younes | Ellouze-Chaabouni, Semia | Ghribi, Dhouha
Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.
Show more [+] Less [-]Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review
2015
Rizwan, Muhammad | Ali, Shafaqat | Ibrahim, Muhammad | Farid, Mujahid | Adrees, Muhammad | Bharwana, Saima Aslam | Zia-ur-Rehman, Muhammad | Qayyum, Muhammad Farooq | Abbas, Farhat
Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na⁺ uptake and translocation while increased K⁺ uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.
Show more [+] Less [-]A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation
2015
Reverchon, Frédérique | Yang, Hong | Ho, Thian Yuan | Yan, Guijun | Wang, Jian | Xu, Zhihong | Chen, Chengrong | Zhang, Dongke
Mining activities result in extensive soil degradation by removing the top soil, disturbing soil structure and altering microbial communities. Rehabilitation of spent mine sites through revegetation thus requires proper soil amendments. In this study, a pot trial was conducted to investigate the effects of a jarrah biochar on the growth and nutrient status of a native legume, Acacia tetragonophylla, grown in a mixture of topsoil and mine rejects. Two biochar application rates (37 and 74 t ha⁻¹) and two types of biochar, namely nutrient-enriched and non-enriched, were tested. We measured the soil pH and electrical conductivity, the carbon (C) and nitrogen (N) contents and C and N isotope composition (δ¹³C and δ¹⁵N) of soil and plants, the foliar phosphorus content and the growth and leaf biomass of the plants. Whilst no significant effect of biochar was observed on plant growth, biochar amendment affected soil properties and plant nutritional status. The highest rate of biochar application increased soil pH, C content and C/N ratio, and decreased soil δ¹³C. Biochar application also enhanced photosynthetic N use efficiency, as showed by the increase in foliar C/N ratio, and biological N fixation rates, as indicated by foliar δ¹⁵N. These positive effects were not observed when biochar was nutrient-enriched due to the associated increase in soil N. Revegetation of mine sites with acacia in combination with biochar amendment constitutes a plausible alternative to the wide use of N fertiliser through the supply of additional N to the system, even though other nutrients may be required in order to enhance plant early growth.
Show more [+] Less [-]A benchmark for numerical scheme validation of airborne particle exposure in street canyons
2015
Marini, S. | Buonanno, G. | Stabile, L. | Avino, P.
Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.
Show more [+] Less [-]Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation
2015
Miran, Waheed | Nawaz, Mohsin | Kadam, Avinash | Shin, Seolhye | Heo, Jun | Jang, Jiseon | Lee, Dae Sung
The expansion in knowledge of the microbial community structure can play a vital role in the electrochemical features and operation of microbial fuel cells (MFCs). In this study, bacterial community composition in a dual chamber MFC fed with brewery waste was investigated for simultaneous electricity generation and azo dye degradation. A stable voltage was generated with a maximum power density of 305 and 269 mW m⁻² for brewery waste alone (2000 mg L⁻¹) and after the azo dye (200 mg L⁻¹) addition, respectively. Azo dye degradation was confirmed by Fourier transform infrared spectroscopy (FT-IR) as peak corresponding to –N=N– (azo) bond disappeared in the dye metabolites. Microbial communities attached to the anode were analyzed by high-throughput 454 pyrosequencing of the 16S rRNA gene. Microbial community composition analysis revealed that Proteobacteria (67.3 %), Betaproteobacteria (30.8 %), and Desulfovibrio (18.3 %) were the most dominant communities at phylum, class, and genus level, respectively. Among the classified genera, Desulfovibrio most likely plays a major role in electron transfer to the anode since its outer membrane contains c-type cytochromes. At the genus level, 62.3 % of all sequences belonged to the unclassified category indicating a high level of diversity of microbial groups in MFCs fed with brewery waste and azo dye. HIGHLIGHTS: • Azo dye degradation and stable bioelectricity generation was achieved in the MFC. • Anodic biofilm was analyzed by high-throughput pyrosequencing of the 16S rRNA gene. • Desulfovibrio (18.3 %) was the dominant genus in the classified genera. • Of the genus, 62.3 % were unclassified, thereby indicating highly diverse microbes. Graphical Abstract A schematic diagram of a dual chamber microbial fuel cell for azo dye degradation and current generation (with microbial communities at anode electrode)
Show more [+] Less [-]Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release
2015
Ni, Lixiao | Li, Danye | Hu, Shuzhen | Wang, Peifang | Li, Shiyin | Li, Yiping | Li, Yong | Acharya, Kumud
To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95 % IR) and S. obliquus (about 90 % IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC–LR in the algal cell culture medium.
Show more [+] Less [-]Phytoscreening-based assessment of mercury in soil
2015
Bigham, Gary | Liang, Lian | Balouet, Jean Christophe | Chalot, Michel
This study was conducted to determine whether phytoscreening techniques could be used to characterize the distribution of Hg in soil at the South River, VA. An estimated 500 to 1000 kg of Hg was released to the South River in the 1930s and 1940s from a synthetic fiber manufacturing plant located in Waynesboro, contaminating the floodplain downstream. Under background conditions (soil Hg <0.03 μg/g), phytoscreening sample Hg concentrations ranged from 1.9 to 3.9 ng/g. With soil Hg concentrations ranging from 0.1 to 94 μg/g in the top 30.5 cm of nearby soil, phytoscreening sample Hg concentrations ranged from 5.0 to 145 ng/g. The variability of Hg concentrations in soil solution over the scale of the entire rhizosphere of the large trees sampled was likely high. Furthermore, the mean depth of water uptake and the exact proximity of the soil profile samples for each tree could not be determined. Nevertheless, the phytoscreening results of this study could be used to reliably provide a qualitative delineation of Hg-contaminated soil.
Show more [+] Less [-]