Refine search
Results 2471-2480 of 4,043
Identification and determination of the contribution of iron–steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China Full text
2016
Zhang, Liu | Bai, Ya-Shu | Wang, Ji-Zhong | Peng, Shu-Chuan | Chen, Tian-Hu | Yin, Da-Qiang
Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron–steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ₁₇PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron–steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron–steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.
Show more [+] Less [-]Highway increases concentrations of toxic metals in giant panda habitat Full text
2016
Zheng, Ying-juan | Chen, Yiping | Maltby, Lorraine | Jin, Xue-lin
The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda’s habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.
Show more [+] Less [-]Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake Full text
2016
Lei, Pei | Zhang, Hong | Shan, Baoqing | Zhang, Bozheng
Pore water plays a more significant role than do sediments in pollutant cycling dynamics. Also, concentrations of pollutants in pore water provide important information about their bioavailability or eco-toxicity; however, very few studies have focused on this topic. In this study, four duplicate sediment cores from three typical northern bays as well as the central part of Taihu Lake were collected to investigate the distribution, diffusive fluxes, and toxicity of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in pore water profiles, which will be good in understanding the mobility and toxicity of these toxic pollutants and achieving better environmental management. The diffusive fluxes of heavy metals across the sediment-water interface was estimated through Fick’s First Law, and the toxicity of heavy metals and PAHs in pore water was assessed by applying a water quality index (interstitial water toxicity criteria unit, IWCTU) and a hazard index (HI), respectively. The average concentrations of Cr, Cu, Ni, Pb, and Zn in surface pore water were 18.8, 23.4, 12.0, 13.5, and 42.5 μg L⁻¹, respectively. Also, concentrations of the selected heavy metals in both overlying water and pore water from Taihu Lake were all lower than the standard values of the environmental quality standards for surface water. The concentrations as the pore water depth increased, and the highest detected concentrations of heavy metals were recorded between 3 and 5 cm below the sediment surface. The average diffusive fluxes of these metals were 27.3, 24.8, 7.03, 7.81, and −3.32 μg (m² day)⁻¹, respectively, indicating export from sediment into overlying water, with the exception of Zn. There was a potential risk of toxicity, mainly from Pb and Cu, indicating that heavy metals in pore water had slight to moderate impact on sediment-dwelling organisms by values of the IWCTU and the Nemeraw index. The total PAH concentrations in pore water were higher than those in overlying water, and such gradient implies a potential flux of PAHs from pore water to overlying water. The average HI value of PAHs in surface pore water showed no or low ecological risk. While there may be occasional risk due to the HI values in some sites being greater than 1, the dominant contributors were carcinogenic PAHs. Because of their potential biological impact, heavy metals and PAHs and their comprehensive toxic effects in pore water should be given priority attention to keep the safety of Taihu Lake.
Show more [+] Less [-]Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes Full text
2016
Afonso-Olivares, Cristina | Montesdeoca-Esponda, Sarah | Sosa-Ferrera, Zoraida | Santana-Rodríguez, José Juan
Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.
Show more [+] Less [-]Comparing estimates of EMEP MSC-W and UFORE models in air pollutant reduction by urban trees Full text
2016
Guidolotti, Gabriele | Salviato, Michele | Calfapietra, Carlo
There is a growing interest to identify and quantify the benefits provided by the presence of trees in urban environment in order to improve the environmental quality in cities. However, the evaluation and estimate of plant efficiency in removing atmospheric pollutants is rather complicated, because of the high number of factors involved and the difficulty of estimating the effect of the interactions between the different components. In this study, the EMEP MSC-W model was implemented to scale-down to tree-level and allows its application to an industrial-urban green area in Northern Italy. Moreover, the annual outputs were compared with the outputs of UFORE (nowadays i-Tree), a leading model for urban forest applications. Although, EMEP/MSC-W model and UFORE are semi-empirical models designed for different applications, the comparison, based on O₃, NO₂ and PM₁₀ removal, showed a good agreement in the estimates and highlights how the down-scaling methodology presented in this study may have significant opportunities for further developments.
Show more [+] Less [-]Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron–aluminum/air/water system Full text
2016
Fan, Jinhong | Wang, Hongwu | Ma, Luming
The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe⁰–Al⁰ significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Feᴵᴵ(ox)₀] and [Feᴵᴵ(ox)₂ ²⁻]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe²⁺ and Al³⁺, their fate, and the activation mechanisms of O₂ reduction. The degradation pathway of 4-CP in ox-enhanced Fe⁰–Al⁰/O₂ may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al⁰–Fe⁰–O₂ process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe⁰–Al⁰/O₂ system for the oxidative degradation of aqueous organic pollutants.
Show more [+] Less [-]On the causal links between health indicator, output, combustible renewables and waste consumption, rail transport, and CO2 emissions: the case of Tunisia Full text
2016
Ben Jebli, Mehdi
This study employs the autoregressive distributed lag (ARDL) approach and Granger causality test to investigate the short- and long-run relationships between health indicator, real GDP, combustible renewables and waste consumption, rail transport, and carbon dioxide (CO₂) emissions for the case of Tunisia, spanning the period of 1990–2011. The empirical findings suggest that the Fisher statistic of the Wald test confirm the existence of a long-run relationship between the variables. Moreover, the long-run estimated elasticities of the ARDL model provide that output and combustible renewables and waste consumption have a positive and statistically significant impact on health situation, while CO₂ emissions and rail transport both contribute to the decrease of health indicator. Granger causality results affirm that, in the short-run, there is a unidirectional causality running from real GDP to health, a unidirectional causality from health to combustible renewables and waste consumption, and a unidirectional causality from all variables to CO₂ emissions. In the long-run, all the computed error correction terms are significant and confirm the existence of long-run association among the variables. Our recommendations for the Tunisian policymakers are as follows: (i) exploiting wastes and renewable fuels can be a good strategy to eliminate pollution caused by emissions and subsequently improve health quality, (ii) the use of renewable energy as a main source for national rail transport is an effective strategy for public health, (iii) renewable energy investment projects are beneficial plans for the country as this contributes to the growth of its own economy and reduce energy dependence, and (iii) more renewable energy consumption leads not only to decrease pollution but also to stimulate health situation because of the increase of doctors and nurses numbers.
Show more [+] Less [-]Use of modeling to protect, plan, and manage water resources in catchment areas Full text
2016
Constant, Thibaut | Charrière, Séverine | Lioeddine, Abdejalil | Emsellem, Yves
The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m³/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another model, developed from Epiclès© software, permits the calculation of the under-root nitrate concentrations for each field based on soil type, climate, and farming practices. When the Watermodel and Epiclès© are coupled, nitrate transfers from the soil to the catchment and the river can be modeled. In this study, the initial pollution due to the actual farming practices was simulated and we were also able to estimate the efficiency of the agronomic action plan by testing several scenarios and calculating the time needed to reach the target nitrate concentration in the well.
Show more [+] Less [-]Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique Full text
2016
El Fels, Loubna | Lemee, Laurent | Ambles, André | Hafidi, Mohamed
The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.
Show more [+] Less [-]Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar Full text
2016
A field experiment was conducted in a Cd-contaminated rice paddy field to evaluate the effect of inorganic and organic metal stabilizers on Cd mobility and rice uptake. A dose of inorganic stabilizer of calcium hydroxide (CH), silicon slag (SS), and wheat straw biochar (BC) was amended respectively to topsoil before rice transplanting. Rice production was managed with the same water regime and fertilization practices consistently between treatments including a control without amendment. Samples of topsoil and rice plant were collected at rice harvest to analyze the Cd mobility and uptake by rice. Without affecting rice grain yield, the stabilizers significantly decreased CaCl₂-extractable Cd in a range of 44 to 75 % compared to the control, corresponding to soil pH changes under the different treatments. Accordingly, Cd concentrations both in rice tissue and in rice grain were very significantly decreased under these treatments. The decrease in rice Cd uptake was correlated to the decrease in extractable Cd, which was again correlated to soil pH change under the different treatments, indicating a prevalent role of liming effect by the amendments. While applied at a large amount in a single year, organic stabilizer of BC decreased Cd extractability by up to 43 % and Cd rice uptake by up to 61 %, being the most effective on Cd immobilization. However, the long-term effect on soil health and potential tradeoff effects with different stabilizers deserve further field monitoring studies.
Show more [+] Less [-]