Refine search
Results 251-260 of 3,600
Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions Full text
2016
Walkiewicz, A. | Bulak, P. | Brzezińska, M. | Wnuk, E. | Bieganowski, A.
Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg−1, respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.
Show more [+] Less [-]Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals Full text
2016
Peterson, Michael G. | Peterson, Sarah H. | Debier, Cathy | Covaci, Adrian | Dirtu, Alin C. | Malarvannan, Govindan | Crocker, Daniel E. | Costa, Daniel P.
Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or distinctions in bioaccumulation across marine mammal species.
Show more [+] Less [-]Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil Full text
2016
Mollon, L.C. | Norton, G.J. | Trakal, L. | Moreno-Jimenez, E. | Elouali, F.Z. | Hough, R.L. | Beesley, L.
Heavy metal(loid) rich ash (≤10,000 mg kg−1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1–3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash.The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits.The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain.
Show more [+] Less [-]Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis Full text
2016
Wei, Xi | Gilevska, Tetyana | Wetzig, Felix | Dorer, Conrad | Richnow, Hans-Hermann | Vogt, Carsten
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.
Show more [+] Less [-]Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions Full text
2016
Arndt, J. | Deboudt, K. | Anderson, A. | Blondel, A. | Eliet, S. | Flament, P. | Fourmentin, M. | Healy, R.M. | Savary, V. | Setyan, A. | Wenger, J.C.
The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe–Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site.
Show more [+] Less [-]Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms Full text
2016
Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota.
Show more [+] Less [-]The developmental effect of difenoconazole on zebrafish embryos: A mechanism research Full text
2016
Mu, Xiyan | Chai, Tingting | Wang, Kai | Zhu, Lizhen | Huang, Ying | Shen, Gongming | Li, Yingren | Li, Xuefeng | Wang, Chengju
Difenoconazole is a widely used triazole fungicide and has been reported to have negative impacts on zebrafish embryos. To investigate the mechanism of its developmental toxicity, zebrafish embryos were exposed to 0.5 and 2.0 mg/L difenoconazole for 96 h. The morphological and physiological indicators of embryo development were tested. The total cholesterol (TCHO) level, triglyceride (TG) level and malondialdehyde (MDA) content were measured at 96 hpf (hours post-fertilization). In addition, the transcription of genes related to embryo development, the antioxidant system, lipid synthesis and metabolism was quantified. Our results showed that a large suite of symptoms were induced by difenoconazole, including hatching regression, heart rate decrease, growth inhibition and teratogenic effects. 0.5 mg/L difenoconazole could significantly increase the TG content of zebrafish embryos at 96 hpf, while no apparent change in the TCHO and MDA level was observed post 96 h exposure. Q-PCR (quantitative real-time polymerase chain reaction) results showed that the transcription of genes related to embryonic development was decreased after exposure. Genes related to hatching, retinoic acid metabolism and lipid homeostasis were up-regulated by difenoconazole.
Show more [+] Less [-]Isotopic evolution of atmospheric Pb from metallurgical processing in Flin Flon, Manitoba: Retrospective analysis using peat cores from bogs Full text
2016
Shotyk, W. | Rausch, N. | Outridge, P.M. | Krachler, M.
Atmospheric Pb deposition was reconstructed using peat cores from bogs in the vicinity of Flin Flon, Manitoba, Canada, home to a zinc refinery and copper smelter. The Sask Lake (SL4-1) core was collected 85 km NW of Flin Flon and Kotyk Lake (KOL) 30 km NE. The distribution of Sr and U show that both profiles are predominantly minerotrophic (ie groundwater-fed), but the Pb concentration profile shows that Pb was received exclusively from the atmosphere. Graphs of 208Pb/206Pb against 206Pb/207Pb document atmospheric Pb contamination dating from the early to mid-1800’s, well before the start of metallurgical processing (in 1930) and attributable to long-range atmospheric transport from other regions of North America. Industrial activities at Flin Flon clearly affected the concentrations, enrichment factor (calculated using Sc), and accumulation rates of Pb, but it is the similarity in isotopic composition, and contrast with crustal values (206Pb/207Pb ca. 1.20 to 1.22) which makes the connection to the Flin Flon ores. The KOL samples dating from 1925–1976 CE have a 206Pb/207Pb of 1.032 ± 0.002 (n = 11) which approach the values for the Flin Flon ores (206Pb/207Pb = 1.008). But even at SL4-1, the peat samples dating from 1925–1976 CE have a 206Pb/207Pb of 1.061 ± 0.022 (n = 18) which is well below the corresponding ratio of Canadian leaded gasoline (206Pb/207Pb = ca. 1.15). The SL4-1 site too, therefore, was clearly impacted by Pb from mining and metallurgy, despite the distance (88 km) from Flin Flon and being predominantly upwind. These two bogs not only provide the chronology of atmospheric Pb deposition for the past decades, but suggest that the extent of contamination may have been underestimated by previous studies.
Show more [+] Less [-]Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Full text
2016
Rouillon, Marek | Taylor, Mark P.
This research evaluates the analytical capabilities of a field portable X-ray fluorescence spectrometer (pXRF) for the measurement of contaminated soil samples using a matrix-matched calibration. The calibrated pXRF generated exceptional data quality from the measurement of ten soil reference materials. Elemental recoveries improved for all 11 elements post-calibration with reduced measurement variation and detection limits in most cases. Measurement repeatability of reference values ranged between 0.2 and 10% relative standard deviation, while the majority (82%) of reference recoveries were between 90 and 110%. Definitive data quality, the highest of the US EPA's three level quality ranking, was achieved for 15 of 19 elemental datasets. Measurement comparability against inductively coupled plasma atomic emission spectrometry (ICP-AES) values was excellent for most elements (e.g, r2 0.999 for Mn and Pb, r2 > 0.995 for Cu, Zn and Cd). Parallel measurement of reference materials revealed ICP-AES and ICP-MS measured Ti and Cr poorly when compared to pXRF. Individual recoveries of soil reference materials by both ICP-AES and pXRF showed that pXRF was equivalent to or better than ICP-AES values for all but two elements (Ni, As). This study demonstrates pXRF as a suitable alternative to ICP-AES analysis in the measurement of Ti, Cr, Mn, Fe, Cu, Zn, Sr, Cd, and Pb in metal-contaminated soils. Where funds are limited, pXRF provides a low-cost, high quality solution to increasing sample density for a more complete geochemical investigation.
Show more [+] Less [-]Changes in quality of life and perceptions of general health before and after operation of wind turbines Full text
2016
Jalali, Leila | Bigelow, Philip | McColl, Stephen | Majowicz, Shannon | Gohari, Mahmood | Waterhouse, Ryan
Ontario is Canada’s provincial leader in wind energy, with over 4000 MW of installed capacity supplying approximately five percent of the province’s electricity demand. Wind energy is now one of the fastest-growing sources of renewable power in Canada and many other countries. However, its possible negative impact on population health, as a new source of environmental noise, has raised concerns for people living in proximity to wind turbines (WTs). The aims of this study were to assess the effect of individual differences and annoyance on the self-reported general health and health-related quality of life (QOL) of nearby residents, using a pre- and post-exposure design. Prospective cohort data were collected before and after WT operations, from the individuals (n = 43) in Ontario, Canada. General health and QOL metrics were measured using standard scales, such as SF12, life satisfaction scales developed by Diener (SWLS) and the Canadian Community Health Survey (CCHS-SWL). The mean values for the Mental Component Score of SF12 (p = 0.002), SWLS (p < 0.001), and CCHS-SWL (p = 0.044) significantly worsened after WT operation for those participants who had a negative attitude to WTs, who voiced concerns about property devaluation, and/or who reported being visually or noise annoyed.
Show more [+] Less [-]