Refine search
Results 251-260 of 4,935
Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans Full text
2019
How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng | Li, Shang-Wei | Liao, Vivian Hsiu-Chuan
Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.
Show more [+] Less [-]Synergistic interaction between effects of phenanthrene and dynamic heat stress cycles in a soil arthropod Full text
2019
Dai, Wencai | Slotsbo, Stine | Damgaard, Christian | Ke, Xin | Wu, Longhua | Holmstrup, Martin
Climatic stressors and chemicals should not be treated as isolated problems since they often occur simultaneously, and their combined effects must be evaluated including their possible interactive effects. In the present study we subjected springtails (Folsomia candida) to combined exposure to phenanthrene and dynamic heat cycles in a full factorial experiment. In a microcosm experiment, we studied the population growth of springtails subjected to a range of sub-lethal concentrations of phenanthrene. During the 28-day experiment we further subjected microcosms to varying numbers of repeated dynamic heat cycles (0–5 cycles) simulating repeated heat waves. We found a synergistic interaction between the effects of phenanthrene and the number of heat waves on both body mass of adults and juvenile production of F. candida showing that the negative effects of phenanthrene were intensified when animals were heat stressed, and/or vice versa. This interaction was not related to internal concentrations of phenanthrene in adult springtails, nor was it due to altered degradation of phenanthrene in soil. We argue that both phenanthrene (by its partitioning into membrane bilayers) and heat have detrimental effects on the physical conditions of cellular membranes in a dose-dependent manner, which, under extreme circumstances, can increase membrane fluidity to a level which is sub-optimal for normal membrane functioning. We discuss the possibility that the synergistic interactions subsequently reduce life-history parameters such as growth and reproduction.
Show more [+] Less [-]BDE-209 induces male reproductive toxicity via cell cycle arrest and apoptosis mediated by DNA damage response signaling pathways Full text
2019
Decabromodiphenyl ether (BDE-209) is commonly used as a flame retardant, usually in products that were utilized in electronic equipment, plastics, furniture and textiles. To identify the impacts of BDE-209 on the male reproductive system and the underlying toxicological mechanisms, 40 male ICR mice were randomly divided into four groups, which were then exposed to BDE-209 at 0, 7.5, 25 and 75 mg kg−1 d−1 for four weeks, respectively. With regard to the in vitro study, GC-2spd cells were treated with BDE-209 at 0, 2, 8 and 32 μg mL−1 for 24 h, respectively. The results from the in vivo experiments showed that BDE-209 resulted in damage to the testis structure, led to cell apoptosis in testis and decreased sperm number and motility, while sperm malformation rates were significantly increased. Moreover, BDE-209 could induce oxidative stress with decreased testosterone levels, result in DNA damage and activate DNA damage response signaling pathways (ATM/Chk2, ATR/Chk1 and DNA-PKcs/XRCC4/DNA ligase Ⅳ). The data from the in vitro experiments showed that BDE-209 led to cytotoxicity by reducing cell viability and increasing LDH release as well. BDE-209 also induced DNA strand breaks, cell cycle arrest at G1 phase and elevated reactive oxygen species (ROS) level in GC-2 cells. These results suggested that BDE-209 could lead to male reproductive toxicity by inducing DNA damage and failure of DNA damage repair which resulted in cell cycle arrest and apoptosis of spermatogenic cell. The present study provided new evidence to elucidate the potential mechanism of male reproductive toxicity induced by BDE-209.
Show more [+] Less [-]Seasonal variation, air-water exchange, and multivariate source apportionment of polycyclic aromatic hydrocarbons in the coastal area of Dalian, China Full text
2019
The concentrations and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in air and seawater dissolved samples from the coastal area of Dalian were investigated, as well as their air-water exchanges. The average concentrations of PAHs were 27.5 ± 14.6 ng/m³ and 49.5 ± 20.5 ng/L in the air and water, respectively. Phenanthrene was the dominant congener in both air and water dissolved phase. Seasonality was discovered in the air with the concentrations higher in winter than in summer, but not in the water dissolved phase. Air-water exchange trends also displayed apparent seasonality with 3–4 ring PAHs generally being volatilization or equilibrium in summer but deposition in winter, which highlighted the important influence of temperature on the air-water exchange direction of PAHs. The air-water exchange fluxes of individual PAH congeners ranged from −24331 to 6541 ng/m²/d, and the highest deposition and volatilization fluxes both appeared at the industrial areas, which emphasized the influence of point source emission to the magnitude of air-water diffusion flux of PAHs. Multivariate source apportionment approaches, including principle component analysis, diagnostic ratios, and positive matrix factorization, were conducted, which suggested that PAHs in water originated from multiple sources. Frequent port transport correlated vehicle/ship emission rather than coal combustion may be the primary contributor of PAHs to the coastal air and water.
Show more [+] Less [-]Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains Full text
2019
The bioavailability of the metalloid arsenic (As) in paddy soil is controlled by microbial cycling of As and other elements such as iron (Fe) and sulfur (S), which are strongly influenced by water management in paddy fields. In this study, we evaluated how water management affects As bioavailability by growing rice plants in a geogenic As-contaminated soil. We determined As speciation in soil porewater and the diversity of the associated microbial community. Continuous flooding enhanced the release of Fe and As and increased arsenite (As(III)) and methylated As species concentrations in the rice grain compared with aerobic treatment. Total inorganic and organic As in the grain was 84% and 81% lower, respectively, in the aerobic treatment compared with the continuous flooding treatment. The amounts of Fe(III)-reducing bacteria (FeRB) increased in the flooded rhizosphere soil. The abundance of FeRB in the soil correlated with the dissolution of Fe and As. Among the As-transformation genes quantified, the aioA gene for As(III) oxidation and arsM gene for As(III) methylation were most abundant. The arsM copy number correlated positively with the levels of dsrB (dissimilatory (bi) sulfite reductase β-subunit), suggesting that dissimilatory sulfate-reducing bacteria (SRB) may play an important role in dimethylarsenate (DMAs(V)) production in soil. Our results show that decreased populations of rhizosphere FeRB and SRB contributed to a lower bioavailability of As, and decreased production of methylated arsenicals under oxic conditions.
Show more [+] Less [-]Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar Full text
2019
Dai, Lulu | Feng, Zhaozhong | Pan, Xiaodong | Xu, Yansen | Li, Pin | Lefohn, Allen S. | Harmens, Harry | Kobayashi, Kazuhiko
Apoplastic ascorbate (ASCapo) is an important contributor to the detoxification of ozone (O3). The objective of the study is to explore whether ASCapo is stimulated by elevated O3 concentrations. The detoxification of O3 by ASCapo was quantified in tobacco (Nicotiana L), soybean (Glycine max (L.) Merr.) and poplar (Populus L), which were exposed to charcoal-filtered air (CF) and elevated O3 treatments (E-O3). ASCapo in the three species were significantly increased by E-O3 compared with the values in the filtered treatment. For all three species, E-O3 significantly increased the malondialdehyde (MDA) content and decreased light-saturated rate of photosynthesis (Asat), suggesting that high O3 has induced injury/damage to plants. E-O3 significantly increased redox state in the apoplast (redox stateapo) for all species, whereas no effect on the apoplastic dehydroascorbate (DHAapo) was observed. In leaf tissues, E-O3 significantly enhanced reduced-ascorbate (ASC) and total ascorbate (ASC+DHA) in soybean and poplar, but significantly reduced these in tobacco, indicating different antioxidative capacity to the high O3 levels among the three species. Total antioxidant capacity in the apoplast (TACapo) was significantly increased by E-O3 in tobacco and poplar, but leaf tissue TAC was significantly enhanced only in tobacco. Leaf tissue superoxide anion (O2•-) in poplar and hydrogen peroxide (H2O2) in tobacco and soybean were significantly increased by E-O3. The diurnal variation of ASCapo, with maximum values occurring in the late morning and lower values experienced in the afternoon, appeared to play an important role in the harmful effects of O3 on tobacco, soybean and poplar.
Show more [+] Less [-]Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study Full text
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Show more [+] Less [-]Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal) Full text
2019
Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal) Full text
2019
The consequences of indoor and outdoor air pollution on human health are of great concern nowadays. In this study, we firstly evaluated indoor and outdoor air pollution levels (CO, CO₂, NO, NO₂, PM₁₀) at an urban site in Dakar city center and at a rural site. Then, the individual exposure levels to selected pollutants and the variations in the levels of biomarkers of exposure were investigated in different groups of persons (bus drivers, traders working along the main roads and housemaids). Benzene exposure levels were higher for housemaids than for bus drivers and traders. High indoor exposure to benzene is probably due to cooking habits (cooking with charcoal), local practices (burning of incense), the use of cleaning products or solvent products which are important emitters of this compound. These results are confirmed by the values of S-PMA, which were higher in housemaids group compared to the others. Urinary 1-HOP levels were significantly higher for urban site housemaids compared to semirural district ones.Moreover, urinary levels of DNA oxidative stress damage (8-OHdG) and inflammatory (interleukin-6 and -8) biomarkers were higher in urban subjects in comparison to rural ones.The air quality measurement campaign showed that the bus interior was more polluted with PM₁₀, CO, CO₂ and NO than the market and urban or rural households. However, the interior of households showed higher concentration of VOCs than outdoor sites confirming previous observations of higher indoor individual exposure level to specific classes of pollutants.
Show more [+] Less [-]Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal)
Assessment of carbon monoxide exposure in roadside food-vending shanties using coal cookstoves in Kolkata, India Full text
2019
Majumdar, Deepanjan | Sharma, Shubham
Roadside food-vending shanties using coal cookstoves may be an important source of carbon monoxide (CO) exposure in megacities in India. The shanties are often small, congested and poorly ventilated, and very little is known about the level of human exposure to CO. Here, we assessed the level of exposure to CO in 25 roadside food-vending shanties using coal cookstoves in Kolkata, India. Portable electrochemical CO monitors were used to measure CO concentrations during peak and non-peak customer-periods in closed (blocked from three sides) and semi-closed (blocked from two sides) shanties. Measurements were taken where customers sit indoor about 5–7 ft away from the cookstoves. The shanties' ventilation rates were measured using tracer gas concentration-decay technique. Levels of blood carboxyhaemoglobin (COHb) and exhaled CO were estimated using regression models. The 1-hr time weighted average (TWA) indoor CO exposure levels ranged from 7.8 to 18.1 ppm during peak-periods, and 0.7–3.1 ppm during non-peak-periods. The exposure levels during peak-periods exceeded the USEPA's reference limit of 9 ppm in all cases in the closed shanties, and in 71% of cases in the semi-closed shanties. The ventilation rates ranged from 5.5 to 23.4 and 14.8 to 32.5 cubic feet per minute (cfm) per person for the closed and semi-closed shanties, respectively, indicating poor ventilation in some shanties. There was significant variation (p = 0.01) in the level of indoor CO exposure between peak and non-peak periods, and between shanty types. The estimated levels of blood COHb during peak and non-peak hours were 0.78 ± 0.7% and 0.35 ± 0.07%, respectively, that were within the normal physiological values in non-smokers.
Show more [+] Less [-]Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms Full text
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, I.R. | Chen, C.R.
Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms Full text
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, I.R. | Chen, C.R.
Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH₃) volatilisation, nitrous oxide (N₂O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH₃ volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N₂O emission by 5 folds. However, the N loss via N₂O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH₃ volatilisation and increased N₂O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments.
Show more [+] Less [-]Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms Full text
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, Ian R. | Chen, C. R.
Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH3) volatilisation, nitrous oxide (N2O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH3 volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N2O emission by 5 folds. However, the N loss via N2O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH3 volatilisation and increased N2O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments.
Show more [+] Less [-]