Refine search
Results 251-260 of 640
Occurrence and distribution of PAHs in stranded dolphin tissues from the Northwestern Mediterranean
2023
Dron, Julien | Wafo, Emmanuel | Boissery, Pierre | Dhermain, Frank | Bouchoucha, Marc | Chamaret, Philippe | Lafitte, Daniel
There are few cetacean tissue-specific polycyclic aromatic hydrocarbon (PAH) concentration studies in the Mediterranean, despite this region is among the most subjected to chemical contamination. PAH analyses were conducted in different tissues of striped dolphins (Stenella coeruleoalba, N = 64) and bottlenose dolphins (Tursiops truncatus, N = 9) stranded along the French Mediterranean coastline from 2010 to 2016. Comparable levels were measured in S. coeruleoalba and T. trucantus (1020 and 981 ng g−1 lipid weight in blubber, 228 and 238 ng g−1 dry weight in muscle, respectively). The results suggested a slight effect of maternal transfer. The greatest levels were recorded by urban and industrial centers, and decreasing temporal trends were observed in males muscle and kidney, but not in other tissues. As a conclusion, the elevated levels measured could represent a serious threat to dolphins populations in this region, particularly by urban and industrial centers.
Show more [+] Less [-]Sponge organic matter recycling: Reduced detritus production under extreme environmental conditions
2023
Maggioni, Federica | Bell, James J. | Pujo-pay, Mireille | Shaffer, Megan | Cerrano, Carlo | Lemonnier, Hugues | Letourneur, Yves | Rodolfo-metalpa, Riccardo
Sponges are a key component of coral reef ecosystems and play an important role in carbon and nutrient cycles. Many sponges are known to consume dissolved organic carbon and transform this into detritus, which moves through detrital food chains and eventually to higher trophic levels via what is known as the sponge loop. Despite the importance of this loop, little is known about how these cycles will be impacted by future environmental conditions. During two years (2018 and 2020), we measured the organic carbon, nutrient recycling, and photosynthetic activity of the massive HMA, photosymbiotic sponge Rhabdastrella globostellata at the natural laboratory of Bouraké in New Caledonia, where the physical and chemical composition of seawater regularly change according to the tide. We found that while sponges experienced acidification and low dissolved oxygen at low tide in both sampling years, a change in organic carbon recycling whereby sponges stopped producing detritus (i.e., the sponge loop) was only found when sponges also experienced higher temperature in 2020. Our findings provide new insights into how important trophic pathways may be affected by changing ocean conditions.
Show more [+] Less [-]Larval dispersal of pearl oysters Pinctada margaritifera in the Gambier Islands (French Polynesia) and exploring options for adult restocking using in situ data and numerical modelling
2023
Bruyère, Oriane | Chauveau, Mathilde | Le Gendre, Romain | Liao, Vetea | Andréfouët, Serge
Black pearl farming is the second source of French Polynesia income after tourism, and Gambier Islands are the main farming sites. Gambier main lagoon contains several sub-lagoons critical for pearl oyster rearing and spat collecting (SC). The Rikitea lagoon, traditionally had good SC rates in the warm season which ensured steady supplies of oysters for black pearl production. However, since 2018, SC has abruptly decreased. To assess the factors affecting SC, Gambier lagoon hydrodynamics was investigated in 2019–2020 to calibrate a hydrodynamic model and simulate larval dispersal around the SC areas. The model shows the strong wind influence on larval dispersal and accumulation patterns and suggests that windy months in the warm season as it can occur during La Niña episodes can explain recent poor SC. Larval dispersal scenarios also informed on best locations to perform adult oyster restocking, a practice that can also enhance SC on the long term.
Show more [+] Less [-]Mitigating plastic pollution at sea: Natural seawater degradation of a sustainable PBS/PBAT marine rope
2023
Le Gué, Louis | Davies, Peter | Arhant, Mael | Vincent, Benoit | Tanguy, Erwan
This paper evaluates the use of a PBS/PBAT biodegradable rope to reduce the environmental impact of fishing gear lost at sea. The study aims to better understand the degradation mechanisms that the rope and its monofilaments may encounter due to the long term exposure to seawater. The monofilaments were immersed in natural seawater for up to 18 months, and rope samples were also immersed to study aging at a larger scale and evaluate the ability of a modelling tool to predict initial and aged states of the rope. At low temperatures, no loss of properties was observed for the monofilament and rope. However, at higher temperatures, biodegradation and hydrolysis processes were observed, leading to a faster loss of properties in the monofilament compared to the rope. The modelling tool provided conservative predictions due to severe mechanical test conditions of aged monofilament and a degradation gradient within the rope structure.
Show more [+] Less [-]Plastics in the Anthropocene: A multifaceted approach to marine pollution management
2023
Rangel-buitrago, Nelson | Neal, William J. | Galgani, Francois
The Anthropocene, defined by human-induced environmental transformations, presents a critical challenge: plastic pollution. This complex problem, particularly prominent in coastal and marine environments, requires integrated and adaptive responses. This opinion paper examines global efforts across policy interventions, scientific innovations, and public education, highlighting both advancements and hurdles in managing this problem. These include enforcement limitations in policy implementation, scalability and cost issues in scientific innovations, and challenges in effecting large-scale behavioral change through public education. The complexities inherent in managing plastic litter in coastal and marine environments are further discussed, emphasizing the necessity for an integrated approach. This approach involves interdisciplinary collaboration, adaptive management, stakeholder engagement, policy integration, sustainable financing, resilience building, capacity enhancement, technological innovation, policy reform, ecosystem-based management, disaster risk reduction, and advocacy. The management of plastic pollution in the Anthropocene requires strategic planning, innovative thinking, and unified global efforts, ultimately providing an opportunity to redefine our relationship with the planet and steer toward a more sustainable future.
Show more [+] Less [-]On-field high-resolution quantification of the cobalt fraction available for bio-uptake in natural waters using antifouling gel-integrated microelectrode arrays
2023
Layglon, Nicolas | Creffield, Sébastien | Bakker, Eric | Tercier-waeber, Mary-lou
We report the optimization, characterization, and validation of Adsorptive Square Wave Cathodic Stripping Voltammetry on antifouling gel-integrated microelectrode arrays for autonomous, direct monitoring of cobalt(II) metal species. Detection is accomplished by complexation with an added nioxime ligand. The limit of detection established for a 90 s accumulation time was 0.29 ± 0.01 nM in freshwater and 0.27 ± 0.06 nM in seawater. The microelectrode array was integrated in a submersible probe to automatically dose the complexing agent nioxime and realize an integrated sensing system. For the first time ever, the potentially bioavailable Co(II) fraction was determined in La Leyre River-Arcachon Bay continuum, enabling to evaluate the potential ecotoxicological impact of freshwater-carried Co(II) in the Arcachon Bay. The measured potentially bioavailable Co(II) concentrations were hazardous for aquatic biota along the continuum. The electrochemical Co(II) data were compared to ICP-MS data in various fractions to determine spatial Co(II) speciation.
Show more [+] Less [-]On the probability of ecological risks from microplastics in the Laurentian Great lakes
2023
Koelmans, A.A. | Redondo Hasselerharm, P.E. | Mohamed Nor, N.H. | Gouin, T.
The Laurentian Great Lakes represent important and iconic ecosystems. Microplastic pollution has become a major problem among other anthropogenic stressors in these lakes. There is a need for policy development, however, assessing the risks of microplastics is complicated due to the uncertainty and poor quality of the data and incompatibility of exposure and effect data for microplastics with different properties. Here we provide a prospective probabilistic risk assessment for Great Lakes sediments and surface waters that corrects for the misalignment between exposure and effect data, accounts for variability due to sample volume when using trawl samples, for the random spatiotemporal variability of exposure data, for uncertainty in data quality (QA/QC), in the slope of the power law used to rescale the data, and in the HC5 threshold effect concentration obtained from Species Sensitivity Distributions (SSDs). We rank the lakes in order of the increasing likelihood of risks from microplastics, for pelagic and benthic exposures. A lake-wide risk, i.e. where each location exceeds the risk limit, is not found for any of the lakes. However, the probability of a risk from food dilution occurring in parts of the lakes is 13–15% of the benthic exposures in Lakes Erie and Huron, and 8.3–10.3% of the pelagic exposures in Lake Michigan, Lake Huron, Lake Superior, and Lake Erie, and 24% of the pelagic exposures in Lake Ontario. To reduce the identified uncertainties, we recommend that future research focuses on characterizing and quantifying environmentally relevant microplastic (ERMP) over a wider size range (ideally 1–5000 μm) so that probability density functions (PDFs) can be better calibrated for different habitats. Toxicity effect testing should use a similarly wide range of sizes and other ERMP characteristics so that complex data alignments can be minimized and assumptions regarding ecologically relevant dose metrics (ERMs) can be validated.
Show more [+] Less [-]Effects of microplastics and chlorpyrifos on earthworms (Lumbricus terrestris) and their biogenic transport in sandy soil
2023
Ju, Hui | Yang, Xiaomei | Osman, Rima | Geissen, Violette
Although microplastics (MPs) are ubiquitous in agricultural soil, little is known about the effects of MPs combined with pesticides on soil organisms and their biogenic transport through the soil profile. In this study, we conducted mesocosm experiments to observe the effects of microplastics (polyethylene (LDPE-MPs) and biodegradable microplastics (Bio-MPs)) and chlorpyrifos (CPF) on earthworm (Lumbricus terrestris) mortality, growth and reproduction, as well as the biogenic transport of these contaminants through earthworm burrows. The results showed that earthworm reproduction was not affected by any treatment, but earthworm weight was reduced by 17.6% and the mortality increased by 62.5% in treatments with 28% Bio-MPs. Treatments with 28% LDPE-MPs and 7% Bio-MPs combined with CPF showed greater toxicity while the treatment with 28% Bio-MPs combined with CPF showed less toxicity on earthworm growth as compared to treatments with only MPs. The treatments with 1250 g ha−1 CPF and 28% Bio-MPs significantly decreased the bioaccumulation of CPF in earthworm bodies (1.1 ± 0.2%, w w−1), compared to the treatment with CPF alone (1.7 ± 0.4%). With CPF addition, more LDPE-MPs (8%) were transported into earthworm burrows and the distribution rate of LDPE-MPs in deeper soil was increased. No effect was observed on the transport of Bio-MPs. More CPF was transported into soil in the treatments with LDPE-MPs and Bio-MPs, 5% and 10% of added CPF, respectively. In addition, a lower level of the CPF metabolite 3,5,6-trichloropyridinol was detected in soil samples from the treatments with MPs additions than without MP additions, indicating that the presence of MPs inhibited CPF degradation. In conclusion, Bio-MPs caused significant toxicity effects on earthworms and the different types of MPs combined with CPF affected earthworms differently, and their transport along the soil profile. Thus, further research is urgently needed to understand the environmental risks of MPs and MP-associated compounds in the soil ecosystem.
Show more [+] Less [-]The role of microplastic aging on chlorpyrifos adsorption-desorption and microplastic bioconcentration
2023
Ju, Hui | Yang, Xiaomei | Osman, Rima | Geissen, Violette
Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 μg g−1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.
Show more [+] Less [-]Benchmarking biochar with activated carbon for immobilizing leachable PAH and heterocyclic PAH in contaminated soils
2023
Carlini, Carlotta | Chaudhuri, Sampriti | Mann, Oliver | Tomsik, Daniel | Hüffer, Thorsten | Greggio, Nicolas | Marazza, Diego | Hofmann, Thilo | Sigmund, Gabriel
Remediation of residually contaminated soils remains a widespread problem. Biochar can immobilize polycyclic aromatic hydrocarbons (PAH). However, studies on its ability to immobilize PAH and N, S, and O substituted PAH (hetero-PAH) in real soils, and benchmarking with commercial activated carbon are missing. Here, we compared the ability of pristine biochar (BC), steam-activated biochar (SABC), and commercial activated carbon (AC) to immobilize PAH and hetero-PAH. The three carbons were tested on soils from four different contaminated sites in Austria. Different amendment rates (w/w) of the carbons were investigated (BC: 1.0, 2.5, and 5%; SABC: 0.5, 1.0, and 2.0%; AC: 1%) in batch experiments to cover meaningful ranges in relation to their performance. SABC performed better than AC, removing at least 80% PAH with the lowest application rate of 0.5%, and achieving a complete removal at an application rate of 1.0%. BC performed slightly worse but still acceptable in residually contaminated soils (40 and 100% removal at 1 and 5% amendment, respectively). The ability of BC and SABC to immobilize PAH decreased as the PAH-molar volume increased. PAH with three or more rings were preferentially removed by AC compared to SABC or BC. This can be explained by the difference in pore size distribution of the carbons which could limit the accessibility of PAH and hetero-PAH to reach sorption sites for π- π electron donor-acceptor interactions, which drive PAH and hetero-PAH sorption to carbons. Column percolation tests confirmed the results obtained in batch tests, indicating, that decisions for soil remediation can be derived from simpler batch experiments. In soil samples with 1% BC, a reduction of over 90% in the total concentration of PAH in the leached water was observed. Overall, BC and SABC were demonstrated to be valid substitutes for AC for stabilizing residually contaminated soils.
Show more [+] Less [-]