Refine search
Results 251-260 of 683
Pace of heavy metal pollution in the anthropogenically altered and industrialized Nakdong River Estuary, South Korea: Implications for the Anthropocene Full text
2024
Lee, Guan-hong | Jung, Nathalie | Dellapenna, Tim | Ra, Kongtae | Chang, Jongwi | Kong, Gee Soo | Nahm, Wook-hyun | Park, Buhm Soon | Jeong, Hyeryeong
Estuaries, vital coastal ecosystems, face growing threats from industrialization. To understand the pace of sedimentary changes and heavy metal pollution at the anthropogenically altered and industrialized Nakdong River Estuary in South Korea, we used sediment coring to reconstruct environmental change. Estuarine dam construction in 1934 shifted the sedimentary system from sand to mud, coinciding with a post-1930s mercury increase due to coal burning. Mercury concentrations in other South Korean regions surged in the 1970s, indicating proximity to emission sources matters. However, most heavy metal levels (Cu, Cd, Zn, Ag) sharply rose in the 1960s and 1970s with regional industrialization. Modern heavy metal concentrations doubled pre-industrial levels, underscoring human activities as the primary driver of Nakdong Estuary environmental changes. This emphasizes the need for a balanced approach to development and environmental preservation.
Show more [+] Less [-]Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Veronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe
Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Veronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe
The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Show more [+] Less [-]Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Véronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe | Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) ; Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS) | Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | Processus Infectieux en Milieu Insulaire Tropical (PIMIT) ; Université de La Réunion (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IRD-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Institut méditerranéen d'océanologie (MIO) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) | The Ocean Cleanup | Interactions moléculaires et réactivité chimique et photochimique (IMRCP) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Cyclotron Réunion Océan Indien (CYROI) ; Université de La Réunion (UR)-Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | This study was supported by funds from the Structure Federative de Recherche Biosecurite en milieu Tropical (BIOST), Universite de la Reunion (France) and Institut de Recherche pour le Developpement (IRD). Project ID: BMRPLAST.
NGS raw data 16SrDNA sequences are deposited in zenodo data bank: https://doi.org/10.5281/zenodo.8063253. | International audience | Highlights: • Severe marine plastic pollution impacts Southwest Indian Ocean insular ecosystems. • Plastic debris from Southwest Indian Ocean host rich microbiomes. • Proteobacteria dominate such marine plastic microbiomes. • These debris carry a consequent culturable bacterial flora including potential pathogens. • AMR bacteria hitchhike on these plastics.Abstract: The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km 2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 10 7 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Show more [+] Less [-]Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Véronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe
The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Show more [+] Less [-]Warming and polymetallic stress induce proteomic and physiological shifts in the neurotoxic Alexandrium pacificum as possible response to global changes Full text
2024
Jean, Natacha | James, Amandin | Balliau, Thierry | Martino, Christian | Ghersy, Jérôme | Savar, Veronique | Laabir, Mohamed | Caruana, Amandine
Harmful Algal Blooms involving the dinoflagellate Alexandrium pacificum continue to increase in ecosystems suffering the climate warming and anthropogenic pressure. Changes in the total proteome and physiological traits of the Mediterranean A. pacificum SG C10–3 strain were measured in response to increasing temperature (24 °C, 27 °C, 30 °C) and trace metal contamination (Cu2+, Pb2+, Zn2+, Cd2+). Warming reduced the cell densities and maximal growth rate (μmax), but the strain persisted at 30 °C with more large cells. The polymetallic stress increased cell sizes, reduced cell growth at 24 °C–27 °C and it increased this at 30 °C. Toxin profiles showed a predominance of GTX4 (32–38 %), then C2 (11–34 %) or GTX6 (18–24 %) among the total Paralytic Shellfish Toxins, however these were modified under warming, showing increased contents in GTX1 (among the most toxic), GTX5, C1 and NeoSTX, while dc-NeoSTX and STX (among the most toxic) only appeared at 30 °C. Under polymetallic contamination, warming also increased contents in GTX5 and NeoSTX. In contrast, polymetallic stress, or warming had harmful effects on C2 contents. Proteins were more quantitatively produced by A. pacificum SG C10–3 under warming in accordance with the high levels of up-regulated proteins found in the total proteome in this condition. Polymetallic stress, only or combined with warming, led to low proteomic modifications (1 % or 4 %), whereas warming induced strong 52 % modified proteomic response, mainly based on up-regulated proteins involved in photosynthesis (light harvesting complex protein), carbohydrate metabolism (arylsulfatase) and translation (ribosomal proteins), and with the lesser down-regulated proteins principally associated with the lipid metabolism (type I polyketide synthase). Our results show that warming triggers a strong up-regulated A. pacificum SG C10–3 proteomic response, which, coupled to modified cell sizes and toxin profiles, could help it to withstand stress conditions. This could presage the success of A. pacificum in anthropized ecosystems submitted to global warming in which this dinoflagellate also might be more toxic.
Show more [+] Less [-]Rethinking plastic entrapment: Misconceptions and implications for ecosystem services in coastal habitats Full text
2024
Rangel-buitrago, Nelson | González-fernández, Daniel | Defeo, Omar | Neal, William | Galgani, Francois
This study addresses the pressing issue of plastic pollution in coastal and marine ecosystems, challenging the misconception that the entrapment of plastics can be considered as an ecosystem service. We differentiate between essential natural processes that sustain ecological balance and biodiversity and the detrimental accumulation of synthetic polymers. The pathways through which plastics enter these environments—from terrestrial to maritime sources—are examined, alongside their pervasive impacts on crucial ecosystem services such as habitat quality, the vitality of marine species, and nutrient cycling. Our findings highlight the paradox of resilience and vulnerability in these ecosystems: while capable of accumulating substantial amounts of plastic debris, they suffer long-lasting ecological, socio-economic, and health repercussions. We argue for a paradigm shift in management strategies aimed at reducing plastic production at the source, improving waste management practices, conducting targeted cleanup operations, and rehabilitating impacted ecosystems. Emphasizing a comprehensive understanding of plastic pollution is vital for framing effective solutions and necessitates a reevaluation of societal, industrial, and regulatory frameworks. This shift is imperative not only to address current pollution levels but also to safeguard and sustain the functionality of coastal ecosystems, ensuring their ability to continue providing essential services and supporting biodiversity.
Show more [+] Less [-]Operationalizing blue carbon principles in France: Methodological developments for Posidonia oceanica seagrass meadows and institutionalization Full text
2024
Comte, Adrien | Barreyre, Jeanne | Monnier, Briac | De Rafael, Roman | Boudouresque, Charles-françois | Pergent, Gérard | Ruitton, Sandrine
Conservation of ecosystems is an important tool for climate change mitigation. Seagrasses, mangroves, saltmarshes and other marine ecosystems have particularly high capacities to sequester and store organic carbon (blue carbon), and are being impacted by human activities. Calls have been made to mainstream blue carbon into policies, including carbon markets. Building on the scientific literature and the French voluntary carbon standard, the ‘Label Bas-Carbone’, we develop the first method for the conservation of Posidonia oceanica seagrasses using carbon finance. This methodology assesses the emission reduction potential of projects that reduce physical impacts from boating and anchoring. We show how this methodology was institutionalized thanks to a tiered approach on key parameters including carbon stocks, degradation rates, and decomposition rates. We discuss future needs regarding (i) how to strengthen the robustness of the method, and (ii) the expansion of the method to restoration of seagrasses and to other blue carbon ecosystems.
Show more [+] Less [-]The largest estuary on the planet is not spared from plastic pollution: Case of the St. Lawrence River Estuary Full text
2024
Toussaint, Lucie | Archambault, Philippe | Del Franco, Laura | Huvet, Arnaud | Waeles, Mathieu | Gigault, Julien | Paul-pont, Ika
The St. Lawrence River, one of the world's largest estuaries, drains >25 % of the world's freshwater reserves and is affected by various anthropogenic effluents. Although previous studies reported micro- and nanoplastics contamination in the Estuary and Gulf of St. Lawrence (EGSL), this study provides a first evaluation of macroplastic pollution along the north and south shores of the EGSL. Plastic debris categorization was performed according to the OSPAR protocol completed by polymer identification using Fourier-transform infrared spectroscopy. The EGSL appeared ubiquitously contaminated by plastic debris, dominated by single-use plastics primarily made of polypropylene (28 %), polyethylene (25 %) and polystyrene (17 %). The EGSL shores exhibited a mean contamination level of 0.17 ± 0.11 items/m2 and distance to Montreal significantly influenced the distribution of plastic debris. This study provides an essential baseline for implementing local waste reduction and management actions in the St. Lawrence watershed to reduce plastic pollution.
Show more [+] Less [-]Addressing the global challenge of coastal sewage pollution Full text
2024
Rangel-buitrago, Nelson | Galgani, Francois | Neal, William J.
Coastal environments, essential for about half of the world's population living near coastlines, face severe threats from human-induced activities such as intensified urbanization, aggressive development, and particularly, coastal sewage pollution. This type of pollution, comprising untreated sewage discharging nutrients, pathogens, heavy metals, microplastics, and organic compounds, significantly endangers these ecosystems. The issue of sewage in coastal areas is complex, influenced by factors like inadequate sewage systems, septic tanks, industrial and agricultural runoff, and natural processes like coastal erosion, further complicated by oceanic dynamics like tides and currents. A global statistic reveals that over 80 % of sewage enters the environment without treatment, contributing significantly to nitrogen pollution in coastal ecosystems. This pollution not only harms marine life and ecosystems through chemical contaminants and eutrophication, leading to hypoxic zones and biodiversity loss, but also affects human health through waterborne diseases and seafood contamination. Additionally, it has substantial economic repercussions, impacting tourism, recreation, and fisheries, and causing revenue and employment losses. Addressing this issue globally involves international agreements and national legislations, but their effectiveness is hindered by infrastructural disparities, particularly in developing countries. Thus, effective management requires a comprehensive approach including advanced treatment technologies, stringent regulations, regular monitoring, and international cooperation. The international scientific community plays a crucial role in fostering a collaborative and equitable response to this pressing environmental challenge.
Show more [+] Less [-]Early signals of Posidonia oceanica meadows recovery in a context of wastewater treatment improvements Full text
2024
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Agel, Noémie | Boissery, Pierre | Guilhaumon, François | Mouquet, Nicolas | Mouillot, David | Guilbert, Antonin | Deter, Julie
Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented “success stories” to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.
Show more [+] Less [-]Comparative analysis of microplastics detection methods applied to marine sediments: A case study in the Bay of Marseille Full text
2024
Gerigny, Olivia | Blanco, Gustavo | Lips, Urmas | Buhhalko, Natalja | Chouteau, Leelou | Georges, Elise | Meyers, Nelle | Vanavermaete, David | Galgani, Francois | Ourgaud, Melanie | Papillon, Laure | Sempéré, Richard | De Witte, Bavo
Comparative analysis of microplastics detection methods applied to marine sediments: A case study in the Bay of Marseille Full text
2024
Gerigny, Olivia | Blanco, Gustavo | Lips, Urmas | Buhhalko, Natalja | Chouteau, Leelou | Georges, Elise | Meyers, Nelle | Vanavermaete, David | Galgani, Francois | Ourgaud, Melanie | Papillon, Laure | Sempéré, Richard | De Witte, Bavo
An intercomparison exercise on “microplastics in sediment” was carried out by five laboratories using samples collected in the Bay of Marseille in September 2021. The results from different extraction and identification methods varied depending on the type and size classes of MPs, and was better than 80 % for the size class >300 μm and for the fragments. The variability in recovery rates can be attributed to the choice of reagents and extraction protocols. Recovery rates per laboratory were between 47 % and 113 % and the use of ZnCl2 and NaI increased recovery rates by an average of 70 %. The lowest recovery rates (47 and 53 %) were attributed to the reference methods (FTIR and LDIR), conversely the highest (80 and 87 %) were attributed to identification by Nile Red. The average ranged between 23 and 53 items /50 g d.w. with decreases offshore and at greater depth.
Show more [+] Less [-]Comparative analysis of microplastics detection methods applied to marine sediments: A case study in the Bay of Marseille Full text
2024
Gerigny, Olivia | Blanco, Gustavo | Lips, Urmas | Buhhalko, Natalja | Chouteau, Leelou | Georges, Elise | Meyers, Nelle | Vanavermaete, David | Galgani, François | Ourgaud, Melanie | Papillon, Laure | Sempéré, Richard | De Witte, Bavo | Ministry of Climate (Estonia) | Agence Nationale de la Recherche (France) | Belgian Science Policy Office | Agencia Estatal de Investigación (España) | Ministerio de Ciencia, Innovación y Universidades (España)
An intercomparison exercise on “microplastics in sediment” was carried out by five laboratories using samples collected in the Bay of Marseille in September 2021. The results from different extraction and identification methods varied depending on the type and size classes of MPs, and was better than 80 % for the size class >300 μm and for the fragments. The variability in recovery rates can be attributed to the choice of reagents and extraction protocols. Recovery rates per laboratory were between 47 % and 113 % and the use of ZnCl2 and NaI increased recovery rates by an average of 70 %. The lowest recovery rates (47 and 53 %) were attributed to the reference methods (FTIR and LDIR), conversely the highest (80 and 87 %) were attributed to identification by Nile Red. The average ranged between 23 and 53 items /50 g d.w. with decreases offshore and at greater depth. | This work has been undertaken as part of the JPI Oceans Andromeda project, which was specifically supported with funding from the Ministry of the Environment of Estonia (MoE), the French Agence Nationale de la Recherche (ANR-19-JOCE-0002-01), the Belgian Science Policy Office (BELSPO) [contract no B2/20E/P1/Andromeda], and the Spanish Ministry of Science, Innovation and Universities (MICIU) [project PCI2020–112047]. | Peer reviewed
Show more [+] Less [-]A Comparative Biomonitoring Study of Trace Metals and Organic Compounds Bioaccumulation in Marine Biofilms and Caged Mussels Along the French Mediterranean Coast Full text
2024
Barre, Abel | Briand, Jean-françois | Vaccher, Vincent | Briant, Nicolas | Briand, J. Marine | Dormoy, Bruno | Boissery, Pierre | Bouchoucha, Marc
A Comparative Biomonitoring Study of Trace Metals and Organic Compounds Bioaccumulation in Marine Biofilms and Caged Mussels Along the French Mediterranean Coast Full text
2024
Barre, Abel | Briand, Jean-françois | Vaccher, Vincent | Briant, Nicolas | Briand, J. Marine | Dormoy, Bruno | Boissery, Pierre | Bouchoucha, Marc
The bioaccumulation potential of contaminants in marine environments was investigated in biofilms and compared with caged mussels for a wide range of both organic and metallic contaminants across a large geographic area. Marine biofilms were sampled after three months of sub-surface immersion at 49 locations along the 1,800 km of the French Mediterranean coast. Ten chemical elements (i.e. As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) and 57 organic compounds (i.e., 18 polycyclic aromatic hydrocarbons (PAHs), 8 dioxin-like and 6 non-dioxin-like polychlorinated biphenyls (PCBs) and 25 organochlorine pesticides (OCPs)) were quantified in triplicates, revealing different multi-contaminated profiles depending on sites. Most of contaminants exhibited higher concentrations in biofilms than in mussels. Moreover, a remarkable significant and positive correlation between the concentrations in both biological matrices was observed for PAHs and PCBs, and more contaminant-dependent for OCPs and metals. These results highlighted the potential of biofilms as relevant bioindicators of the marine chemical contamination.
Show more [+] Less [-]A Comparative Biomonitoring Study of Trace Metals and Organic Compounds Bioaccumulation in Marine Biofilms and Caged Mussels Along the French Mediterranean Coast Full text
2024
Barre, Abel | Briand, Jean-François | Vaccher, Vincent | Briant, Nicolas | Briand, J. Marine | Dormoy, Bruno | Boissery, Pierre | Bouchoucha, Marc | Laboratoire Matériaux Polymères Interfaces Environnement Marin - EA 4323 (MAPIEM) ; Université de Toulon (UTLN) | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Unité Contamination Chimique des Ecosystèmes Marins (CCEM) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Laboratoire Environnement Ressources Provence Azur Corse (LERPAC) ; Unité Observation et écologie de la restauration des écosystèmes littoraux (COAST) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Laboratoire d'Analyses de Surveillance et d'Expertise de la Marine (LASEM) ; LASEM | Agence de l'eau Rhône Méditerranée Corse
International audience | The bioaccumulation potential of contaminants in marine environments was investigated in biofilms and compared with caged mussels for a wide range of both organic and metallic contaminants across a large geographic area. Marine biofilms were sampled after three months of sub-surface immersion at 49 locations along the 1,800 km of the French Mediterranean coast. Ten chemical elements (i.e. As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) and 57 organic compounds (i.e., 18 polycyclic aromatic hydrocarbons (PAHs), 8 dioxin-like and 6 non-dioxin-like polychlorinated biphenyls (PCBs) and 25 organochlorine pesticides (OCPs)) were quantified in triplicates, revealing different multi-contaminated profiles depending on sites. Most of contaminants exhibited higher concentrations in biofilms than in mussels. Moreover, a remarkable significant and positive correlation between the concentrations in both biological matrices was observed for PAHs and PCBs, and more contaminant-dependent for OCPs and metals. These results highlighted the potential of biofilms as relevant bioindicators of the marine chemical contamination.
Show more [+] Less [-]