Refine search
Results 2561-2570 of 4,043
Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals Full text
2016
Zaaboub, Noureddine | Helali, Mohamed Amine | Martins, Maria Virgínia Alves | Ennouri, Rym | Béjaoui, Béchir | da Silva, Eduardo Ferreira | El Bour, Monia | Aleya, Lotfi
Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon’s surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water–sediment interface by means of SEM and AVS to seek conclusions concerning the study area’s pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEMMₑₜₐₗ on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.
Show more [+] Less [-]Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release Full text
2016
Dang, Tan | Mosley, Luke M. | Fitzpatrick, Rob | Marschner, Petra
Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release Full text
2016
Dang, Tan | Mosley, Luke M. | Fitzpatrick, Rob | Marschner, Petra
When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L⁻¹ and Fe 48 mg L⁻¹) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05–0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.
Show more [+] Less [-]Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release Full text
2016
Dang, T. | Mosley, L. | Fitzpatrick, R. | Marschner, P.
When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L⁻¹ and Fe 48 mg L⁻¹) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals. | Tan Dang, Luke M. Mosley, Rob Fitzpatrick, Petra Marschner
Show more [+] Less [-]Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China Full text
2016
Pan, Libo | Ma, Jin | Hu, Yu | Su, Benying | Fang, Guangling | Wang, Yue | Wang, Zhanshan | Wang, Lei | Xiang, Bao
A total of 128 surface soil samples were collected, and eight heavy metals, including As, Cd, Cr, Cu, Pb, Ni, Zn, and Hg, were analyzed for their concentrations, potential ecological risks, and human health risks. The mean concentrations of these eight metals were lower than the soil environmental quality standards in China, while they were slightly higher than the background values in Shanxi Province. The enrichment factor, coefficient variation, and potential ecological risk index were used to assess the pollution and eco-risk level of heavy metals, among which, Cd and Hg showed higher pollution levels and potential risks than the others in the studied area. Moreover, multivariate geostatistical analysis suggested that Hg originated mainly from point sources such as industrial emissions, while agricultural activity is the predominant factor for Cd. The human health risk assessment indicated that non-carcinogenic values were below the threshold values. The total carcinogenic risks due to As, Cr, and Ni were within the acceptable range for adults, while for children, they were higher than the threshold value (1.0E−04), indicating that children are facing higher threat to heavy metals in soils. These results provide basic information on heavy metal pollution control and human health risk assessment management in the study regions.
Show more [+] Less [-]Spatial variations in water quality of river Ganga with respect to land uses in Varanasi Full text
2016
Sharma, Shikha | Roy, Arijit | Agrawal, Madhoolika
Water quality of a river is a function of surrounding environment and land use due to its connectivity with land, resulting in pollutants finding their way through land. This necessitates a spatially explicit study of river ecology. The paper presents a pioneer study to establish and explore the linkage between land use and water quality of river Ganga in Varanasi district. The land use land cover (LULC) map of 20 km of river stretch for buffer radii of 1000 m in Varanasi revealed that riparian vegetation is negligible in the district. The hierarchical cluster analysis of LULC data suggested that there are two major land use categories, viz., urban and agriculture. The land use wise principal component analysis (PCA) suggested that urbanized areas are major contributor of metals, whereas agricultural land contributes organic matter into the river. The Spearman correlation study revealed that with rising urbanization, the pollutant load into the river increased compared to that from agricultural land use. The statistical analysis of the data clearly concluded that water quality of river Ganga at Varanasi was a function of adjacent land use. The study provides an insight anticipating the Indian government to embrace the relationship of land use to river water quality while formulating policies for the upcoming River Regulation Zone.
Show more [+] Less [-]Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China Full text
2016
Miao, Yucong | Liu, Shuhua | Zheng, Yijia | Wang, Shu
Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45 % of surface particulate matter (PM)₂.₅ in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM₂.₅ concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM₂.₅ concentration there.
Show more [+] Less [-]Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry Full text
2016
Chakraborty, Parthasarathi | Chakraborty, Sucharita | Vudamala, Krushna | Sarkar, Arindam | Nath, B Nagender
Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal–sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn–Teller effect, and water exchange rate (k ₋w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k ₋w of Cu (II) (1 × 10⁹ s⁻¹) increased the rate of complex formation of Cu²⁺ ion with ligand in the organic phases. The Cu–ligand (from organic phase) complexes gained extra stability by the Jahn–Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni²⁺ (0.72 Å) than Pb²⁺ (1.20 Å) increase the stability of Ni–ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb²⁺ ions) also make Ni-organic complexes increasingly stable than Pb. High k ₋w (7 × 10⁹ s⁻¹) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb²⁺ and Fe³⁺. High surface area or site availability for Pb²⁺ ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment.
Show more [+] Less [-]Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution Full text
2016
Polechońska, Ludmiła | Samecka-Cymerman, Aleksandra
The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high.
Show more [+] Less [-]Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid Full text
2016
Trivedi, Nikhilesh S. | Mandavgane, Sachin A. | Kulkarni, B. D.
The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K₂O (18.55 %), and P₂O₅ (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R ² > 0.99), with the highest k ₂ value of the order 10⁵. Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).
Show more [+] Less [-]Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells Full text
2016
Guo, Fang-Zi | Zhang, Lian-Shuang | Wei, Jia-Liu | Ren, Li-Hua | Zhang, Jin | Jing, Li | Yang, Man | Wang, Ji | Sun, Zhi-Wei | Zhou, Xian-Qing
Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.
Show more [+] Less [-]Fluorescent components and spatial patterns of chromophoric dissolved organic matters in Lake Taihu, a large shallow eutrophic lake in China Full text
2016
Yao, Bo | Hu, Chunming | Liu, Qingquan
Water samples at both surface and bottom layers were taken from 102 sites in Lake Taihu to study the fluorescent components and spatial patterns of chromophoric dissolved organic matters (CDOM). Three-dimensional excitation-emission matrix data obtained from the samples were analyzed by parallel factor approach in which four humic-like and two protein-like fluorescent components (named C1–C6) were identified. The results showed that fluorescence intensities were higher in the northern and western lake regions, and notable declines of fluorescence maxima (F ₘₐₓ) were observed from the northwest to the center and then to the southeast of the lake. Calculated biological index (BIX) values ranged from 0.88 to 1.44 and humification index (HIX) values from 0.64 to 3.37 for all the samples. The spatial variations of BIX and HIX values suggested stronger allochthonous CDOM characteristics in Zhushan Bay and the western area and autochthonous characteristics in the southern and eastern areas. Vertically, the average F ₘₐₓ value of the surface samples was about 6 % less than that of the bottom samples, but noticeable variations existed among different sampling sites and components. These distribution characteristics of CDOM were mainly attributed to the spatial heterogeneity of sources and wind-induced transportation process. Interestingly, the C6 component (Exₘₐₓ/Emₘₐₓ = 250/455 nm) seemed to be unique in samples from Zhushan Bay and probably resulted from the discharge of the Taige River. Therefore, it could be used as an indicator of point-source discharge and a tracer to study the fate of CDOM in the lake.
Show more [+] Less [-]