Refine search
Results 2591-2600 of 4,033
Late season pharmaceutical fate in wetland mesocosms with and without phosphorous addition
2016
Cardinal, Pascal | Anderson, Julie C. | Carlson, Jules C. | Low, Jennifer E. | Challis, Jonathan K. | Wong, Charles S. | Hanson, Mark L.
The fate of six human-use drugs was assessed and predicted in mesocosms designed to mimic shallow constructed wetlands during the onset of fall and senescence. Mesocosms were monitored for 28 days after the addition of carbamazepine, clofibric acid, fluoxetine and naproxen (nominal initial concentrations of 5 μg/L each), sulfamethoxazole, and sulfapyridine (nominal initial concentrations of 150 μg/L each), with and without phosphorous (P) addition at 1.6 mg/L. We hypothesized that addition of P would stimulate primary productivity and enhance removal of pharmaceuticals from the water column. Carbamazepine, clofibric acid, fluoxetine, and naproxen had half-lives of 8.7, 11, 1.5, and 2.5, and 8.6, 11.0, 1.4, and 2.5 days in treatments with and without P amendment, respectively. Sulfamethoxazole and sulfapyridine had half-lives of 17 and 4.9 days in mesocosms with P amendment and 17 and 4.7 days without amendment. A concurrent pulse of P with pharmaceuticals did not significantly enhance the removal of these compounds. Predicted half-lives from modeling efforts were consistent with observed values, with photolysis the greatest contributor to chemical attenuation.
Show more [+] Less [-]Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron
2016
de Oliveira, Lilian Karla | Melo, Camila de Almeida | Fraceto, Leonardo Fernandes | Friese, Kurt | Rosa, André Henrique
The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by ¹³C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69–80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS.
Show more [+] Less [-]Prediction models for transfer of arsenic from soil to corn grain (Zea mays L.)
2016
Yang, Hua | Li, Zhaojun | Long, Jian | Liang, Yongchao | Xue, Jianming | Davis, Murray | He, Wenxiang
In this study, the transfer of arsenic (As) from soil to corn grain was investigated in 18 soils collected from throughout China. The soils were treated with three concentrations of As and the transfer characteristics were investigated in the corn grain cultivar Zhengdan 958 in a greenhouse experiment. Through stepwise multiple-linear regression analysis, prediction models were developed combining the As bioconcentration factor (BCF) of Zhengdan 958 and soil pH, organic matter (OM) content, and cation exchange capacity (CEC). The possibility of applying the Zhengdan 958 model to other cultivars was tested through a cross-cultivar extrapolation approach. The results showed that the As concentration in corn grain was positively correlated with soil pH. When the prediction model was applied to non-model cultivars, the ratio ranges between the predicted and measured BCF values were within a twofold interval between predicted and measured values. The ratios were close to a 1:1 relationship between predicted and measured values. It was also found that the prediction model (Log [BCF]=0.064 pH-2.297) could effectively reduce the measured BCF variability for all non-model corn cultivars. The novel model is firstly developed for As concentration in crop grain from soil, which will be very useful for understanding the As risk in soil environment.
Show more [+] Less [-]Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate
2016
Manoukian, A. | Buiron, D. | Temime-Roussel, B. | Wortham, H. | Quivet, E.
This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.
Show more [+] Less [-]Aging with higher fractional exhaled nitric oxide levels are associated with increased urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine concentrations in elder females
2016
Hou, Jian | Yang, Yuqing | Huang, Xiji | Song, Yuanchao | Sun, Huizhen | Wang, Jianshu | Hou, Fan | Liu, Chuanyao | Chen, Weihong | Yuan, Jing
Indoor air pollutants from environmental tobacco smoke and cooking fume can induce oxidative stress and inflammatory response, which generate oxidatively damaged DNA in human body. Among 2224 adults, levels of FENO and urinary 8-oxodG were measured using a nano coulomb nitric oxide analyzer and a high performance liquid chromatography system with electrochemical detector, respectively. Association between aging with higher FENO levels and urinary 8-oxodG levels were analyzed using multiple linear regression analysis. Nonsmoking women aged 64 years and over, with higher FENO (≥ 25 part per billion) and self-catering but without passive smoking had a higher risk of increased urinary 8-oxodG (△% of urinary 8-oxodG: 81.3 %, 95 % CI: 27.4–158.0 %) levels, particularly these elderly women with using liquefied petroleum gas for cooking, had a higher risk for increased urinary 8-oxodG levels (△% of urinary 8-oxodG: 100.2 %, 95 % CI: 95 % CI: 35.3–196.3 %), compared with those aged less than 64 years, with lower FENO (< 25 part per billion). Cooking activity aggravated aging-related the aging-induced in urinary 8-oxodG excretion among nonsmoking women aged 64 years and over but without passive smoking.
Show more [+] Less [-]Monitoring an outdoor smoking area by means of PM2.5 measurement and vegetal biomonitoring
2016
da Silveira Fleck, Alan | Carneiro, Maria Fernanda Hornos | Barbosa, Fernando Jr | Thiesen, Flavia Valladão | Amantea, Sergio Luis | Rhoden, Claudia Ramos
The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 μm (PM₂.₅) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM₂.₅ was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM₂.₅ in the smoking area in all days of monitoring was 66 versus 34 μg/m³ in the control area (P < 0.001). In addition, the elements Al, Cd, Cu, Ni, Pb, Rb, Sb, Se, and V in Tradescantia pallida and Al, Ba, Cr, Cu, Fe, Mg, Pb, and Zn in Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1 ± 10.7 %) compared with control (17.6 ± 4.5 %) (P = 0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.
Show more [+] Less [-]Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms
2016
Govindarajan, Marimuthu | Kadaikunnan, Shine | Alharbi, Naiyf S. | Benelli, Giovanni
The recent outbreaks of dengue, chikungunya, and Zika virus highlighted the pivotal importance of mosquito vector control in tropical and subtropical areas worldwide. However, mosquito control is facing hot challenges, mainly due to the rapid development of pesticide resistance in Culicidae and the limited success of biocontrol programs on Aedes mosquitoes. In this framework, screening botanicals for their mosquitocidal potential may offer effective and eco-friendly tools in the fight against mosquitoes. In the present study, the essential oil (EO) obtained from the medicinal plant Origanum scabrum was analyzed by GC-MS and evaluated for its mosquitocidal and repellent activities towards Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, and Culex tritaeniorhynchus. GC-MS analysis showed a total of 28 compounds, representing 97.1 % of the EO. The major constituents were carvacrol (48.2 %) and thymol (16.6 %). The EO was toxic effect to the A. stephensi, A. aegypti, C. quinquefasciatus, and C. tritaeniorhynchus larvae, with LC₅₀ of 61.65, 67.13, 72.45, and 78.87 μg/ml, respectively. Complete ovicidal activity was observed at 160, 200, 240, and 280 μg/ml, respectively. Against adult mosquitoes, LD₅₀ were 122.38, 134.39, 144.53, and 158.87 μg/ml, respectively. In repellency assays, the EOs tested at 1.0, 2.5, and 5.0 mg/cm² concentration of O. scabrum gave 100 % protection from mosquito bites up to 210, 180, 150, and 120 min, respectively. From an eco-toxicological point of view, the EO was tested on three non-target mosquito predators, Gambusia affinis, Diplonychus indicus, and Anisops bouvieri, with LC₅₀ ranging from 4162 to 12,425 μg/ml. Overall, the EO from O. scabrum may be considered as a low-cost and eco-friendly source of phytochemicals to develop novel repellents against Culicidae.
Show more [+] Less [-]Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil
2016
Gusiatin, Zygmunt Mariusz | Kurkowski, Radosław | Brym, Szczepan | Wiśniewski, Dariusz
In contaminated soils, excessive concentrations of metals and their high mobility pose a serious environmental risk. A suitable soil amendment can minimize the negative effect of metals in soil. This study investigated the effect of different biochars on metal (Cu, Pb, Zn) immobilization in industrial soil. Biochars produced at 300 and 600 °C from conventional (MS, maize silage; WP, wooden pellets) and alternative (SC, sewage sludge compost; DR, digestate residue) feedstocks were used as soil amendments at a dosage of 10 % (w/w). The type of feedstock and pyrolysis temperature affected the properties of the biochars and their ability to immobilize metal in soil. Compared to production at 300 °C, all biochars produced at 600 °C had higher pH (6.2–10.7), content of ash (7.2–69.0 %) and fixed carbon (21.1–56.7 %), but lower content of volatile matter (9.7–37.2 %). All biochars except DR biochar had lower dissolved organic carbon (DOC) content (1.4–2.3 g C/L) when made at 600 °C. Only MS and SC biochars had higher cation exchange capacity (25.2 and 44.7 cmol/kg, respectively) after charring at 600 °C. All biochars contained low concentrations of Cd, Cu, Ni, Pb and Zn; Cd was volatilized to the greatest extent during pyrolysis. Based on FTIR analysis and molar ratios of H/C and O/C, biochars had a greater degree of carbonization and aromaticity after charring at 600 °C. The efficiency of the biochars in metal immobilization depended mainly on their pH, ash content, and concentration of DOC. SC and DR biochars were more effective for Cu and Zn immobilization than MS and WP biochars, which makes them attractive options for large-scale soil amendment.
Show more [+] Less [-]Effects of repeated soil irrigation with liquid biological paper sludge on poplar Populus alba saplings: potential risks and benefits
2016
Corbel, Sylvain | Bourioug, Mohamed | Alaoui-Sossé, Laurence | Bourgeade, Pascale | Alaoui-Sossé, Badr | Aleya, Lotfi
The authors explored the risks and benefits of repeated irrigation of Populus alba saplings with aqueous paper sludge (APS). Saplings were cultivated in pots of forest soil (3 L) in a greenhouse for 7 weeks and watered twice a week with differing concentrations of APS (0, 10, 20, 30, 50, 75, and 100 % v/v with deionized water). Plant growth and ecophysiological variables along with zinc and aluminum transfer were monitored. A stimulation of plant growth was observed with sludge treatments of 30 or 50 %, significantly correlated to APS input (r = 0.81). This may be explained by the easily available nitrogen as is shown with the positive correlation of CO₂ assimilation and leaf nitrogen (r = 0.70). However, a significant reduction in plant growth was observed when treatments of 75 and 100 % of APS were administered, despite a high nutritional level (nitrogen and phosphorus). The study suggests that APS concentrations from 30 to 50 % may positively affect the growth of poplar saplings; however, the higher concentrations indicated a risk for plant growth and the environment.
Show more [+] Less [-]Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil
2016
Han, Tao | Zhao, Zhipeng | Bartlam, Mark | Wang, Yingying
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.
Show more [+] Less [-]