Refine search
Results 261-270 of 798
Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy Full text
2009
Bindler, Richard | Renberg, Ingemar | Rydberg, Johan | Andrén, Thomas
Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren - Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution. Pollution in Sweden during AD 900-1900 was often greater than modern industrial pollution.
Show more [+] Less [-]Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment Full text
2009
Geurts, Jeroen J.M. | Sarneel, Judith M. | Willers, Bart J.C. | Roelofs, Jan G.M. | Verhoeven, Jos T.A. | Lamers, Leon P.M.
Both eutrophication and SO₄ pollution can lead to higher availability of nutrients and potentially toxic compounds in wetlands. To unravel the interaction between the level of eutrophication and toxicity at species and community level, effects of SO₄ were tested in nutrient-poor and nutrient-rich fen mesocosms. Biomass production of aquatic and semi-aquatic macrophytes and colonization of the water layer increased after fertilization, leading to dominance of highly competitive species. SO₄ addition increased alkalinity and sulphide concentrations, leading to decomposition and additional eutrophication. SO₄ pollution and concomitant sulphide production considerably reduced biomass production and colonization, but macrophytes were less vulnerable in fertilized conditions. The experiment shows that competition between species, vegetation succession and terrestrialization are not only influenced by nutrient availability, but also by toxicity, which strongly interacts with the level of eutrophication. This implies that previously neutralized toxicity effects in eutrophied fens may appear after nutrient reduction measures have been taken. Interspecific competition, vegetation succession and terrestrialization in fens depend on the interacting effects of SO₄ pollution, sulphide toxicity and nutrient availability.
Show more [+] Less [-]Effects of inorganic lead on Western fence lizards (Sceloporus occidentalis) Full text
2009
Salice, Christopher J. | Suski, Jamie G. | Bazar, Matthew A. | Talent, Larry G.
Although anthropogenic pollutants are thought to threaten reptilian species, there are few toxicity studies on reptiles. We evaluated the toxicity of Pb as lead acetate to the Western fence lizard (Sceloporus occidentalis). The acute lethal dose and sub-acute (14-day) toxicity studies were used to narrow exposure concentrations for a sub-chronic (60-day) study. In the sub-chronic study, adult and juvenile male lizards were dosed via gavage with 0, 1, 10 and 20 mg Pb/kg-bw/day. Mortality was limited and occurred only at the highest dose (20 mg Pb/kg-bw/d). There were statistically significant sub-lethal effects of 10 and 20 mg Pb/kg-bw/d on body weight, cricket consumption, organ weight, hematological parameters and post-dose behaviors. Of these, Pb-induced changes in body weight are most useful for ecological risk assessment because it is linked to fitness in wild lizard populations. The Western fence lizard is a useful model for reptilian toxicity studies. The Western fence lizard, Sceloporus occidentalis, is sensitive to Pb and is a useful laboratory model for ecotoxicological testing of reptiles.
Show more [+] Less [-]Evaluation of approaches to calculate critical metal loads for forest ecosystems Full text
2009
Vries, W de | Groenenberg, J.E.
This paper evaluates approaches to calculate acceptable loads for metal deposition to forest ecosystems, distinguishing between critical loads, stand-still loads and target loads. We also evaluated the influence of including the biochemical metal cycle on the calculated loads. Differences are illustrated by examples of Cd, Cu, Pb and Zn for a deciduous forest on five major soil types in the Netherlands. Stand-still loads are generally lower than critical loads, which in turn are lower than the target loads indicating that present levels are below critical levels. Uncertainties in the calculated critical loads are mainly determined by the uncertainty in the critical limits and the chemical speciation model. Including the metal cycle has a small effect on the calculated critical loads. Results are discussed in view of the applicability of the critical load concept for metals in future protocols on the reduction in metal emissions. Critical load methods for metals can be used to assess future risks due to metal inputs.
Show more [+] Less [-]Polychlorinated biphenyl (PCB) load, lipid reserves and biotransformation activity in migrating Atlantic salmon from River Mörrum, Sweden Full text
2009
Hansson, Maria C. | Persson, Maria E. | Larsson, Per | Schantz, Torbjörn von
Atlantic salmon accumulate high levels of contaminants such as polychlorinated biphenyls (PCBs) in their lipids during the adult growth phase spent at sea. The lipids are later utilized during migration for swimming and biological adaptations. We hypothesize that migrating salmons' biotransformation processes are affected by the high levels of built-up PCBs compared to salmon that in a pre-migrational stage. For these analyses we sampled adult Atlantic salmon during migration in the Swedish River Mörrum and measured the 21 most common PCB congeners (∑PCB) and lipid levels in muscle tissue, aryl hydrocarbon receptor (AHR2) and cytochrome P4501A1 (CYP1A1) transcript levels as well as ethoxyresorufin-O-deethylase activity (EROD) in liver. We also determined which AHR2 genotypes the salmon carried. We show that EROD activity is correlated to CYP1A1 level but not to ∑PCB concentration. ∑PCB concentration does not predict levels of neither the AHR2 nor CYP1A1 genes. We find no associations between specific AHR2 transcription levels and AHR2 genotypes or a correlation between AHR2 and CYP1A1 transcription levels, which is in direct contrast to pre-migrational adult salmon from the Baltic Sea. When we compare River Mörrum to salmon we have previously sampled in the Baltic Sea we show that migrating salmon have significantly lower lipid levels in their muscles; higher muscle concentrations of ∑PCB on a lipid basis; and significantly lower CYP1A1 and EROD levels compared to salmon from the Baltic Sea. Also, transcript levels of three out of four AHR2 genes are significantly different. In conclusion, migrating Swedish Atlantic salmon carry higher concentrations of PCBs in their lipids compared to salmon in the Baltic Sea, but have lower activation of biotransformation genes and enzymes. Our results indicate that accumulated pollutants from the Baltic Sea are deactivated inside the migrating salmon's lipid tissues and increase in concentration when migration is initiated thereby limiting their impact on biotransformation processes. Migrating Atlantic salmon in the Swedish River Mörrum carry high PCB concentrations in their lipids but have low activation of biotransformation enzymes in the liver compared with salmon from the Baltic Sea
Show more [+] Less [-]Preferential retention of POPs on the northern aspect of mountains Full text
2009
Tremolada, Paolo | Parolini, Marco | Binelli, Andrea | Ballabio, Cristiano | Comolli, Roberto | Provini, Alfredo
Soils are the main reservoirs of POPs in mountain ecosystems, but the great variability of the concentrations, also at small scale, leaves some uncertainties in the evaluation of environmental burdens and exposure. The role of the aspect of the mountain side and the seasonal variation in the contamination levels was analysed by means of several soil samples taken from central Italian Alps. A greater contamination content was present in northern soils with a mean ratio between the north vs. south normalised concentration of around a factor of 2 (North–South Enrichment Factor). Experimental factors agreed with theoretical calculations based on temperature-specific calculated Ksa values. From May to November consistent differences in normalised concentrations up to 5-fold were observed. A dynamic picture of the POP contamination in high altitudinal soils is derived from the data in this work, with spring-summer half-lives between 60 and 120 days for most of the compounds. This paper discusses the accumulation of POPs in soils in relation to the aspect of the mountain side and supports the idea of a seasonal cycle of POPs in this matrix.
Show more [+] Less [-]Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments Full text
2009
Weber, Jan | Kurková, Romana | Klánová, Jana | Klán, Petr | Halsall, Crispin J.
Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 °C) and ice (−15 °C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments. Photodegradation of methyl-parathion and fenitrothion in water and ice under environmentally-relevant conditions is described.
Show more [+] Less [-]Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations Full text
2009
Mainiero, Raphael | Kazda, Marian | Haberle, Karl-Heinz | Nikolova, Petia Simeonova | Matyssek, Rainer
Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.
Show more [+] Less [-]Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose-response study Full text
2009
Langer, Ingrid | Krpata, Doris | Fitz, Walter J. | Wenzel, Walter W. | Schweiger, Peter F.
The effect of increasing soil Zn concentrations on growth and Zn tissue concentrations of a metalaccumulating aspen clone was examined in a dose-response study. Plants were grown in a soil with a low native Zn content which was spiked with Zn salt solutions and subsequently aged. Plant growth was not affected by NH₄NO₃-extractable soil Zn concentrations up to 60 μg Zn g⁻¹ soil, but it was completely inhibited at extractable concentrations above 90 μg Zn g⁻¹ soil. From these data an effective concentration of 68.5 μg extractable Zn g⁻¹ soil was calculated at which plant growth was reduced by 50%. The obtained information on toxicity threshold concentrations, and the relation between plant Zn accumulation and extractable soil Zn concentrations may be used to assess the suitability of the investigated Populus canescens clone for various phytoremediation strategies. The potential risk of metal transfer into food webs associated with P. canescens stands on Zn-polluted sites may also be estimated.
Show more [+] Less [-]Effect of 3 years' free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics Full text
2009
Percy, Kevin E. | Manninen, Sirkku | Häberle, Karl-Heinz | Heerdt, C. | Werner, H. | Henderson, Gary W. | Matyssek, Rainer
We examined the effect of ozone (O₃) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O₃ ranged from 64.5 to 74.2 μl O₃ l⁻¹ h AOT40, and 117.1 to 123.2 nl O₃ l⁻¹ 4th highest daily maximum 8-h average O₃ concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2x O₃. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O₃ treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2x O₃. Exposure to 2x O₃ increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O₃ on wax biosynthesis. These results demonstrate O₃-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees. Free-air ozone exposure induced changes in needle wax characteristics of mature Picea abies.
Show more [+] Less [-]