Refine search
Results 261-270 of 640
Aquatic plastisphere: interactions between plastics and biofilms
2023
Yu, Yue | Miao, Lingzhan | Adyel, Tanveer M. | Waldschläger, Kryss | Wu, Jun | Hou, Jun
Because of the high production rates, low recycling rates, and poor waste management of plastics, an increasing amount of plastic is entering the aquatic environment, where it can provide new ecological niches for microbial communities and form a so-called plastisphere. Recent studies have focused on the one-way impact of plastic substrata or biofilm communities. However, our understanding of the two-way interactions between plastics and biofilms is still limited. This review first summarizes the formation process and the co-occurrence network analysis of the aquatic plastisphere to comprehensively illustrate the succession pattern of biofilm communities and the potential consistency between keystone taxa and specific environmental behavior of the plastisphere. Furthermore, this review sheds light on mutual interactions between plastics and biofilms. Plastic properties, environmental conditions, and colonization time affect biofilm development. Meanwhile, the biofilm communities, in turn, influence the environmental behaviors of plastics, including transport, contaminant accumulation, and especially the fragmentation and degradation of plastics. Based on a systematic literature review and cross-referencing from these disciplines, the current research focus, and future challenges in exploring aquatic plastisphere development and biofilm-plastic interactions are proposed.
Show more [+] Less [-]The role of microplastic aging on chlorpyrifos adsorption-desorption and microplastic bioconcentration
2023
Ju, Hui | Yang, Xiaomei | Osman, Rima | Geissen, Violette
Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 μg g−1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.
Show more [+] Less [-]Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems
2023
Lwanga, Esperanza Huerta | Van Roshum, Ilse | Munhoz, Davi R. | Meng, Ke | Rezaei, Mahrooz | Goossens, Dirk | Bijsterbosch, Judith | Alexandre, Nuno | Oosterwijk, Julia | Krol, Maarten | Peters, Piet | Geissen, Violette | Ritsema, Coen
Although microplastic pollution jeopardizes both terrestrial and aquatic ecosystems, the movement of plastic particles through terrestrial environments is still poorly understood. Agricultural soils exposed to different managements are important sites of storage and dispersal of microplastics. This study aimed to identify the abundance, distribution, and type of microplastics present in agricultural soils, water, airborne dust, and ditch sediments. Soil health was also assessed using soil macroinvertebrate abundance and diversity. Sixteen fields were evaluated, 6 of which had been exposed to more than 5 years of compost application, 5 were exposed to at least 5 years of plastic mulch use, and 5 were not exposed to any specific management (controls) within the last 5 years. We also evaluated the spread of microplastics from the farms into nearby water bodies and airborne dust. We found 11 types of microplastics in soil, among which Light Density Polyethylene (LDPE) and Light Density Polyethylene covered with pro-oxidant additives (PAC) were the most abundant. The highest concentrations of plastics were found in soils exposed to plastic mulch management (128.7 ± 320 MPs.g-1 soil and 224.84 ± 488 MPs.g-1 soil, respectively) and the particles measured from 50 to 150 μm. Nine types of microplastics were found in water, with the highest concentrations observed in systems exposed to compost. Farms applying compost had higher LDPE and PAC concentrations in ditch sediments as compared to control and mulch systems; a significant correlation between soil polypropylene (PP) microplastics with ditch sediment microplastics (r2 0.7 p 0.05) was found. LDPE, PAC, PE (Polyethylene), and PP were the most abundant microplastics in airborne dust. Soil invertebrates were scarce in the systems using plastic mulch. A cocktail of microplastics was found in all assessed matrices.
Show more [+] Less [-]Integument colour change : Tracking delayed growth of Oppia nitens as a sub-lethal indicator of soil toxicity
2023
Jegede, Olukayode O. | Fajana, Hamzat O. | Adedokun, Adedamola | Najafian, Keyhan | Lingling, Jin | Stavness, Ian | Siciliano, Steven D.
Growth is an important toxicity end-point in ecotoxicology but is rarely used in soil ecotoxicological studies. Here, we assessed the growth change of Oppia nitens when exposed to reference and heavy metal toxicants. To assess mite growth, we developed an image analysis methodology to measure colour spectrum changes of the mite integument at the final developmental stage, as a proxy for growth change. We linked the values of red, green, blue, key-black, and light colour of mites to different growth stages. Based on this concept, we assessed the growth change of mites exposed to cadmium, copper, zinc, lead, boric acid, or phenanthrene at sublethal concentrations in LUFA 2.2 soil for 14 days. Sublethal effects were detected after 7 days of exposure. The growth of O. nitens was more sensitive than survival and reproduction when exposed to copper (EC50growth = 1360 mg/kg compared to EC50reproduction = 2896 mg/kg). Mite growth sensitivity was within the same order of magnitude to mite reproduction when exposed to zinc (EC50growth = 1785; EC50reproduction = 1562 mg/kg). At least 25% of sublethal effects of boric acid and phenanthrene were detected in the mites but growth was not impacted when O. nitens were exposed to lead. Consistent with previous studies, cadmium was the most toxic metal to O. nitens. The mite growth pattern was comparable to mite survival and reproduction from previous studies. Mite growth is a sensitive toxicity endpoint, ecologically relevant, fast, easy to detect, and can be assessed in a non-invasive fashion, thereby complimenting existing O. nitens testing protocols.
Show more [+] Less [-]Anchoring pressure and the effectiveness of new management measures quantified using AIS data and a mobile application
2023
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Holon, Florian | Boissery, Pierre | Blandin, Agathe | Mouquet, Nicolas | Deter, Julie
Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.
Show more [+] Less [-]Distribution and accumulation of metals and metalloids in planktonic food webs of the Mediterranean Sea (MERITE-HIPPOCAMPE campaign)
2023
Chifflet, Sandrine | Briant, Nicolas | Tesán-onrubia, Javier Angel | Zaaboub, Noureddine | Amri, Sirine | Radakovitch, Olivier | Bǎnaru, Daniela | Tedetti, Marc
Particle-size classes (7 fractions from 0.8 to 2000 μm) were collected in the deep chlorophyll maximum along a Mediterranean transect including the northern coastal zone (bays of Toulon and Marseilles, France), the offshore zone (near the North Balearic Thermal Front), and the southern coastal zone (Gulf of Gabès, Tunisia). Concentrations of biotic metals and metalloids (As, Cd, Cr, Cu, Fe, Mn, Ni, Sb, V, Zn) bound to living or dead organisms and faecal pellets were assessed by phosphorus normalisation. Biotic metals and metalloids concentrations (except Cr, Mn, and V) were higher in the offshore zone than in the coastal zones. In addition, biotic Sb and V concentrations appeared to be affected by atmospheric deposition, and biotic Cr concentrations appeared to be affected by local anthropogenic inputs. Essential elements (Cd, Cu, Fe, Mn, Ni, V, Zn) were very likely controlled both by the metabolic activity of certain organisms (nanoeukaryotes, copepods) and trophic structure. In the northern coastal zone, biomagnification of essential elements was controlled by copepods activities. In the offshore zone, metals and metalloids were not biomagnified probably due to homeostasis regulatory processes in organisms. In the southern coastal zone, biomagnification of As, Cu, Cr, Sb could probably induce specific effects within the planktonic network.
Show more [+] Less [-]Influence of waves on the three-dimensional distribution of plastic in the ocean
2023
Bajon, Raphael | Huck, Thierry | Grima, Nicolas | Maes, Christophe | Blanke, Bruno | Richon, Camille | Couvelard, Xavier
The world's oceans are facing plastic pollution, 80 % of which of terrestrial origin flowing from the mismanaged waste of coastal populations and from river discharge. To study the fate of this pollution, the three-dimensional trajectories of neutral plastic particles continuously released for 24 years according to realistic source scenarios are computed using currents from a global ocean-wave coupled model at resolution and from a reference ocean-only model. These Lagrangian simulations show that neutral particles accumulate at the surface in the subtropical convergence zones from where they penetrate to about 250 m depth and strongly disperse over 40∘ of latitude. About 5.3 % of the particles remain at the surface with the wave-coupled model currents, whereas only 2 % for the uncoupled model, with some modulation in the location of the convergence zones. Increased surface retention results from upward vertical velocities induced by widespread divergence of waves-induced Stokes transport in the surface layers.
Show more [+] Less [-]Pollution and ecological risk assessments for heavy metals in coastal, river, and road-deposited sediments from Apia City in Upolu Island, Samoa
2023
Jeong, Hyeryeong | Ra, Kongtae
This study was the first to investigate the pollution and ecological risks of heavy metals in coastal, river/stream and road-deposited sediments (RDS) from Apia in Samoa. Cr and Ni concentrations in sediment samples were higher than those of other metals. River sediments and RDS had relatively high EF values around the intensive commercial areas, with a moderate to significant enrichment of Cu, Zn, Cd, and Pb. The results indicate that Cr and Ni have a natural origin from volcanic parent materials, while Cu, Zn, Cd, and Pb originated from anthropogenic activities, such as traffic emissions and the discharge of municipal wastewater. The assessments of pollution and ecological risk revealed that coastal sediments adjacent to the river are anthropogenically contaminated and present a moderate ecological risk. This study demonstrates that metals that have accumulated in the urban impermeable layer and river/stream bed have flowed into the coastal environment through runoff.
Show more [+] Less [-]Spatial variations of biochemical content and stable isotope ratios of size-fractionated plankton in the Mediterranean Sea (MERITE-HIPPOCAMPE campaign)
2023
Tesán-onrubia, Javier Angel | Tedetti, Marc | Carlotti, François | Tenaille, Melissa | Guilloux, Loïc | Pagano, Marc | Lebreton, Benoit | Guillou, Gaël | Fierro-gonzález, Pamela | Guigue, Catherine | Chifflet, Sandrine | Garcia, Théo | Boudriga, Ismail | Belhassen, Malika | Zouari, Amel Bellaaj | Bănaru, Daniela
Plankton represents the main source of carbon in marine ecosystems and is consequently an important gateway for contaminants into the marine food webs. During the MERITE– HIPPOCAMPE campaign in the Mediterranean Sea (April–May 2019), plankton was sampled from pumping and net tows at 10 from the French coast to the Gulf of Gabès (Tunisia) to obtain different size fractions in contrasted regions. This study combines various approaches, including biochemical analyses, analyses of stable isotope ratios (δ13C, δ15N), cytometry analyses and mixing models (MixSiar) on size-fractions of phyto- and zooplankton from 0.7 to >2000 μm. Pico- and nanoplankton represented a large energetic resource at the base of pelagic food webs. Proteins, lipids, and stable isotope ratios increased with size in zooplankton and were higher than in phytoplankton. Stable isotope ratios suggest different sources of carbon and nutrients at the base of the planktonic food webs depending on the coast and the offshore area. In addition, a link between productivity and trophic pathways was shown, with high trophic levels and low zooplankton biomass recorded in the offshore area. The results of our study highlight spatial variations of the trophic structure within the plankton size-fractions and will contribute to assess the role of the plankton as a biological pump of contaminants.
Show more [+] Less [-]Contamination of planktonic food webs in the Mediterranean Sea: Setting the frame for the MERITE-HIPPOCAMPE oceanographic cruise (spring 2019)
2023
Tedetti, Marc | Tronczynski, Jacek | Carlotti, François | Pagano, Marc | Ismail, Sana Ben | Sammari, Cherif | Hassen, Malika Bel | Desboeufs, Karine | Poindron, Charlotte | Chifflet, Sandrine | Zouari, Amel Bellaaj | Abdennadher, Moufida | Amri, Sirine | Bănaru, Daniela | Abdallah, Lotfi Ben | Bhairy, Nagib | Boudriga, Ismail | Bourin, Aude | Brach-papa, Christophe | Briant, Nicolas | Cabrol, Léa | Chevalier, Cristele | Chouba, Lassaad | Coudray, Sylvain | Yahia, Mohamed Nejib Daly | De Garidel-thoron, Thibault | Dufour, Aurélie | Dutay, Jean-claude | Espinasse, Boris | Fierro-gonzález, Pamela | Fornier, Michel | Garcia, Nicole | Giner, Franck | Guigue, Catherine | Guilloux, Loïc | Hamza, Asma | Heimbürger-boavida, Lars-eric | Jacquet, Stéphanie | Knoery, Joël | Lajnef, Rim | Belkahia, Nouha Makhlouf | Malengros, Deny | Martinot, Pauline L. | Bosse, Anthony | Mazur, Jean-charles | Meddeb, Marouan | Misson, Benjamin | Pringault, Olivier | Quéméneur, Marianne | Radakovitch, Olivier | Raimbault, Patrick | Ravel, Christophe | Rossi, Vincent | Rwawi, Chaimaa | Hlaili, Asma Sakka | Tesán-onrubia, Javier Angel | Thomas, Bastien | Thyssen, Melilotus | Zaaboub, Noureddine | Garnier, Cédric
This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.
Show more [+] Less [-]