Refine search
Results 2651-2660 of 3,208
The response of water quality variation in Poyang Lake (Jiangxi, People’s Republic of China) to hydrological changes using historical data and DOM fluorescence Full text
2015
Poyang Lake is a unique wetland system that has evolved in response to natural seasonal fluctuations in water levels. To better characterize the response of water quality to hydrological variation, historical data were analyzed in combination with dissolved organic matter (DOM) fluorescence samplings conducted in situ. Historical data showed that long-term changes in water quality are mainly controlled by the sewage inputs to Poyang Lake. Monthly changes in water quality recorded during 2008 and 2012 suggest that water level may be the most important factor for water quality during a hydrological year. DOM fluorescence samples were identified as three humic-like components (C1, C2, and C3) and a protein-like component (C4). These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. Principal component analysis (PCA) showed higher C1 and C2 signals during a normal season than the wet season, whereas C3 was lower, and C4 was higher in the dry season than in the wet or normal seasons. From the open lake to the Yangtze River mouth, increased C3 component carried by backflows of the Yangtze River to the lake resulted in these unique variations of PCA factor 2 scores during September. These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. DOM fluorescence could be a proxy for capturing rapid changes in water quality and thereby provide an early warning signal for the quality of water supply.
Show more [+] Less [-]Lipophilic shellfish toxins in Dinophysis caudata picked cells and in shellfish from the East China Sea Full text
2015
We reported previously that okadaic acid (OA) and dinophysistoxin-1 (DTX1) were responsible for diarrhetic shellfish poisoning (DSP) incidents due to consuming cultivated mussels (Mytilus galloprovincialis) in coastal cities near the East China Sea in May 2011. Pectenotoxin-2 (PTX2) and its seco acids were also present in these mussels. Causative species of microalgae were not identified because detailed information on the location of the contaminated shellfish was not recorded. In order to explore potential causes for these poisoning events, the lipophilic toxin profiles in picked cells of Dinophysis and in shellfish samples collected from two mariculture zones in the East China Sea were analyzed in the present study. Single-cell isolates (100 cells total for each location) of Dinophysis were collected from the aquaculture zones of Gouqi Island (Ningbo City, Zhejiang Province) and Qingchuan Bay (Ningde City, Fujian Province) in July and September 2013, respectively, for lipophilic toxin profiling. Shellfish samples collected over the course of a year from the Gouqi Island aquaculture zone and mussels (M. galloprovincialis) collected four times from the Qingchuan Bay aquaculture zone were tested for lipophilic toxins by LC-MS/MS. The Dinophysis cells isolated from both sampling sites were identified under the light microscope as Dinophysis caudata. Average quota of PTX2, the predominant toxin in D. caudata isolated from the coastal waters of Gouqi Island and Qingchuan Bay, was 0.58 and 2.8 pg/cell, respectively. Only trace amounts of OA and DTX1 were detected in D. caudata. PTX2, PTX2sa, 7-epi-PTX2sa, OA, and/or DTX1 were found in samples of mussels (M. galloprovincialis and Mytilus coruscus) collected in the Gouqi Island aquaculture zone from the end of May to the beginning of July 2013. PTX2, PTX2sa, and 7-epi-PTX2sa were also detected in oyster (Crassostrea gigas) during that period, but almost no OA and DTX1 were present. Gymnodimine (GYM) was detected in almost all mussel (M. coruscus) samples, with the highest levels occurring in winter. Trace amounts of pectenotoxins (PTXs) and OAs were also found in mussels (M. galloprovincialis) collected from Qingchuan Bay. D. caudata is suggested as an important source of PTXs in shellfish cultivated in the East China Sea. This is the first report of toxin profiles for single-cell isolates of Dinophysis in the East China Sea.
Show more [+] Less [-]Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants Full text
2015
The emergent plants Acorus calamus, Lythrum salicaria, and Scirpus tabernaemontani were exposed to atrazine for 15, 30, 45, and 60 days in a hydroponic system. Effects were evaluated investigating plant growth, chlorophyll (Chl) content, peroxidase (POD) activity, and malondialdehyde (MDA) content. Results showed that selected plants survived in culture solution with atrazine ≤8 mg L⁻¹, but relative growth rates decreased significantly in the first 15-day exposure. Chla content decreased, but MDA increased with increasing atrazine concentration. S. tabernaemontani was the most insensitive species, followed by A. calamus and L.salicaria. The growth indicators exhibited significant changes in the early stage of atrazine exposure; subsequently, the negative impacts weakened and disappeared. Plant growth may be more representative of emergent plant fitness than physiological endpoints in toxicity assessment of herbicides to emergent plants.
Show more [+] Less [-]The suitability of extraction solutions to assess bioaccessible trace metal fractions in airborne particulate matter: a comparison of common leaching agents Full text
2015
The determination of bioaccessible metal concentrations and/or fractions is a prerequisite for reliable assessment of the hazardous potential of toxic trace metals present in airborne particulate matter (APM). For this purpose, the use of various leaching agents has been reported in literature. The applied reagents reveal severe differences in composition. Therefore, variations in the amounts of trace metals released from APM samples could be expected with the use of these agents, hampering comparison of literature data. In this work, bioaccessible metal fractions were determined in PM10 samples from Graz, Austria, and Karachi, Pakistan, using synthetic gastric juice (SGJ), artificial lysosomal fluid (ALF), Gamble’s solution, aqueous solutions of sodium chloride, ammonium acetate, ammonium citrate, and water for sample extraction. Investigated trace metals showed distinct differences in extractable fractions for the same extractant. For example, bioaccessible contents ranged from 34.8 ± 13.3 % for Ni (n = 12) to 77.9 ± 14.8 % for Cd (n = 12) when SGJ was used for extraction. Furthermore, extraction yields for the applied leaching agents were determined, indicating for all investigated elements two to four times more efficient extraction with SGJ, ammonium citrate buffer, and ALF as compared to water and simple inorganic salt solutions, indicating that ammonium citrate buffer could be used as an alternative for synthetic body fluids with rather complex composition.
Show more [+] Less [-]Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater Full text
2015
Groundwater was collected in 2011 and 2012, and fluorescence spectroscopy coupled with chemometric analysis was employed to investigate the composition, origin, and dynamics of dissolved organic matter (DOM) in the groundwater. The results showed that the groundwater DOM comprised protein-, fulvic-, and humic-like substances, and the protein-like component originated predominantly from microbial production. The groundwater pollution by landfill leachate enhanced microbial activity and thereby increased microbial by-product-like material such as protein-like component in the groundwater. Excitation-emission matrix fluorescence spectra combined with parallel factor analysis showed that the protein-like matter content increased from 2011 to 2012 in the groundwater, whereas the fulvic- and humic-like matter concentration exhibited no significant changes. In addition, synchronous-scan fluorescence spectra coupled with two-dimensional correlation analysis showed that the change of the fulvic- and humic-like matter was faster than that of the protein-like substances, as the groundwater flowed from upstream to downstream in 2011, but slower than that of the protein-like substance in 2012 due to the enhancement of microbial activity. Fluorescence spectroscopy combined with chemometric analysis can investigate groundwater pollution characteristics and monitor DOM dynamics in groundwater.
Show more [+] Less [-]Degradation of florfenicol in water by UV/Na2S2O8 process Full text
2015
UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H₂O₂ process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO₃ ⁻, Cl⁻, and HCO₃ ⁻), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO₃ ⁻ > Cl⁻ > NO₃ ⁻. Coexisting ferrous ions enhanced FLO degradation at a Fe²⁺/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.
Show more [+] Less [-]Surface water quality in the Sinos River basin, in Southern Brazil: tracking microbiological contamination and correlation with physicochemical parameters Full text
2015
Dalla Vecchia, Andréia | Rigotto, Caroline | Staggemeier, Rodrigo | Soliman, Mayra Cristina | Gil de Souza, Fernanda | Henzel, Andreia | Santos, Eliane Lemos | do Nascimento, Carlos Augusto | de Quevedo, Daniela Muller | Fleck, Juliane Deise | Heinzelmann, Larissa Schemes | de Matos Almeida, Sabrina Esteves | Spilki, Fernando Rosado
Around the world, enteric viruses are often found in surface waters. This study set out to evaluate the occurrence of adenoviruses (AdVs) in water samples, and its relation to different physical, chemical, and bacteriological parameters [total coliform (TC) and fecal coliform (FC), represented by Escherichia coli]. Monthly samples of 500 ml of raw water were collected from May 2011 to June 2013 in eight abstraction points water treatment stations along three stretches of the Sinos River Basin (SRB), in Southern Brazil and, subsequently, were analyzed using real-time polymerase chain reaction (qPCR). AdVs from different species, from human (HAdV), and from other animals (CAV1–2, BAdV, PAdV, and AvAdV) were detected along the three stretches of the basin, indicating fecal contamination from different sources and proving the inefficiency of the wastewater treatment in the waters of the SRB and intensifying the strong influence of human activities that can contribute to the presence of inhibitory substances such as organic acids in surface of these waters. Statistical analyses revealed no significant correlations between the concentrations of TC and FC and the concentrations of AdVs. We observed a small, nonconstant, and unstable correlation between viruses and physicochemical parameters. These correlations were not sufficiently consistent to establish a reliable association; therefore, this study corroborates that only the viral assay itself is reliable for the diagnosis of fecal contamination by viruses in environmental samples.
Show more [+] Less [-]Sequential dynamic artificial neural network modeling of a full-scale coking wastewater treatment plant with fluidized bed reactors Full text
2015
Ou, Hua-Se | Wei, Chao-Hai | Wu, Hai-Zhen | Mo, Ce-Hui | He, Bao-Yan
This study proposed a sequential modeling approach using an artificial neural network (ANN) to develop four independent models which were able to predict biotreatment effluent variables of a full-scale coking wastewater treatment plant (CWWTP). Suitable structure and transfer function of ANN were optimized by genetic algorithm. The sequential approach, which included two parts, an influent estimator and an effluent predictor, was used to develop dynamic models. The former parts of models estimated the variations of influent COD, volatile phenol, cyanide, and NH₄ ⁺-N. The later parts of models predicted effluent COD, volatile phenol, cyanide, and NH₄ ⁺-N using the estimated values and other parameters. The performance of these models was evaluated by statistical parameters (such as coefficient of determination (R ²), etc.). Obtained results indicated that the estimator developed dynamic models for influent COD (R ² = 0.871), volatile phenol (R ² = 0.904), cyanide (R ² = 0.846), and NH₄ ⁺-N (R ² = 0.777), while the predictor developed feasible models for effluent COD (R ² = 0.852) and cyanide (R ² = 0.844), with slightly worse models for effluent volatile phenol (R ² = 0.752) and NH₄ ⁺-N (R ² = 0.764). Thus, the proposed modeling processes can be used as a tool for the prediction of CWWTP performance.
Show more [+] Less [-]Characterising the fate of nitrogenous waste from the sea-cage aquaculture of spiny lobsters using numerical modelling Full text
2015
Lee, Soxi | Hartstein, Neil D. | Jeffs, Andrew
Although the aquaculture of spiny lobsters has been expanding since the 1970s, very little is known about the potential environmental impacts on water quality of this activity. This study quantified the production of dissolved inorganic nitrogen (DIN) from Australasian red spiny lobsters, Jasus edwardsii, in the laboratory, and these data were then used in a numerical model to predict the dispersal pattern of DIN from a hypothetical commercial spiny lobster farm for a coastal site where such a farm would typically be located. Modelling scenarios were set up with combinations of two different stocking densities (3 and 5 kg m⁻³), two different diets (mussels and moist artificial diet) and three different feed conversion ratios (FCR = 3, 5 and 28). DIN excretion rate from unfed lobsters in the laboratory on average was 1.10 ± 0.12 μg N g⁻¹ h⁻¹ while feeding lobsters on mussels and artificial diet increased DIN excretion significantly by around eightfold and twofold, respectively. Ammonia was consistently the dominant contributor to measured DIN output from lobsters. Modelling results indicated that the mean elevated DIN from a hypothetical farm where the lobsters were fed with mussels ranged from 7 up to 20 μg N L⁻¹ with increasing stocking density and FCR and was 30–150 % higher than the mean elevated DIN resulting from lobsters fed with artificial diet. Overall, the results indicated that DIN output from the hypothetical spiny lobster sea-cage farming is unlikely to be problematic using the FCR, stocking density, and the number of cages modelled at the coastal site in this study. Furthermore, feeding lobsters with artificial diet can help maintain a lower DIN output than seafood, such as mussels or trash fish.
Show more [+] Less [-]Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region, China Full text
2015
Bo, Luji | Wang, Dejian | Li, Tianling | Li, Yan | Zhang, Gang | Wang, Can | Zhang, Shanqing
Concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) were measured in water, sediments, Ceratophyllum (hornwort), and Bellamya sp. (edible snail) from residential, mixed (industrial and commercial), and agricultural areas with rural rivers in the Taihu Lake region, China. Zn concentrations were the highest, whereas Cd concentrations were the lowest among the six metals in water, sediments, and aquatic organisms. Cd was mainly present in the acid-soluble fraction, Cr in the residual fraction, and Pb in the reducible fraction of sediments. Heavy metal concentrations in water, sediments, and aquatic organisms in the three areas followed the order of the mixed area > residential area > agricultural area. Heavy metal concentrations in aquatic organisms were not only related to total metal concentrations in water and sediments but also to metal speciation concentrations in sediments. In addition, the bio-concentration factor (BCF) values of Cr, Cu, Pb, and Zn for Bellamya sp. were higher than those for Ceratophyllum, whereas the BCF values of Cd and Ni for Bellamya sp. were lower than those for Ceratophyllum. An ecological risk assessment of heavy metals in sediments showed that Cd posed the highest ecological risk to the environment. A health risk assessment showed that consuming Bellamya sp. from the mixed area could cause a potential health risk.
Show more [+] Less [-]