Refine search
Results 2661-2670 of 4,935
Removal of Cu2+ and Ni2+ from Wastewater by Using Modified Alkali-Leaching Residual Wire Sludge as Low-Cost Adsorbent Full text
2019
Kong, Ming | Wang, Longmian | Chao, Jianying | Ji, Zhongxi | Peng, Fuquan | Yang, Fei | Zhang, Yimin
Alkali-leaching residual wire sludge (AWRS) is an abundant by-product in the harmless disposal process of wire rope sludge. In this study, we modified AWRS through thermal treatment to produce a low-cost and highly efficient adsorbent for the removal of Cu²⁺ and Ni²⁺ from wastewater. The results indicated that AWRS calcinated at 700 °C exhibited maximum Cu²⁺ and Ni²⁺ removal capacities (36.48 mg/g and 46.58 mg/g, respectively). The adsorption process was observed to follow the Elovich kinetic model and the Langmuir–Freundlich isotherm model. The sorption of Cu²⁺ and Ni²⁺ on AWRS700 was highly pH dependent and behaved optimally at the solution pH values of 6 and 5, respectively. Column studies and physicochemical analyses (XRD, SEM-EDS, and XPS) indicated that the sorption of Cu²⁺ and Ni²⁺ on AWRS700 was mainly governed by the chemisorption mechanism, and this was attributed to active metal oxides (Fe₂O₃, CaO, and Al₂O₃) in AWRS700. Specifically, Cu²⁺ is mainly adsorbed on AWRS700 in the form of Cu(OH)₂, CuO₂, and CuFeO₂, and Ni²⁺ is mainly adsorbed in the form of NiAlO₄, Ni₂O₃, and Ni(OH)₂. Given the low-cost and high adsorption efficiency of AWRS700, the developed AWRS700 is a promising adsorbent for Cu²⁺ and Ni²⁺ removal from wastewater.
Show more [+] Less [-]Effects of Biogas Slurry Application on Crop Production and Soil Properties in a Rice–Wheat Rotation on Coastal Reclaimed Farmland Full text
2019
Tang, Yifan | Wen, Guoliang | Li, Pingping | Dai, Cheng | Han, Jiangang
The field experiment of a rice–wheat rotation system was conducted on a coastal reclaimed farmland with different application rates of biogas slurry from a large-scale standardized hoggery. Crop yield, grain quality, and soil properties were examined to determine the appropriate application rate. At the slurry application rates of 480 m³ ha⁻¹ for rice and 9.00–11.25 m³ ha⁻¹ for wheat, grain yields of rice and wheat were 8.9 and 15.7% higher than those under conventional fertilization, respectively. When 840 m³ ha⁻¹ biogas slurry was applied to the rice field, the grain amino acid content was significantly higher than that of conventionally fertilized rice. In the rice–wheat rotation system, under biogas slurry treatments, soil pH and EC did not significantly increase; the contents of soil Pb, Cr, Cu, and Zn were within allowable limits; the contents of soil alkali-hydrolyzable nitrogen were greatly increased and significantly higher than those under conventional fertilization treatment; and the content of soil organic matter had no significant difference with that under no fertilization treatment. Therefore, the recommended application rate of biogas slurry on coastal reclaimed farmland should be 480 and 9.00–11.25 m³ ha⁻¹ for rice and wheat, respectively.
Show more [+] Less [-]Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium Full text
2019
Xie, Jie | Dong, Aiqin | Liu, Jia | Su, Jinping | Hu, Bo | Xu, Changxu | Chen, Jingrui | Wu, Qitang
Dissolved organic matter (DOM) can become a carrier of soil contaminants. Therefore, an understanding of the evolution and characteristics of DOM produced by Chinese milk vetch during green manuring is crucial. In this study, DOM solutions from 28 days’ manuring with three different organic materials were characterized using three-dimensional fluorescence excitation–emission matrix (3D-EEM) with parallel factor (PARAFAC) analysis, and ultraviolet–visible spectroscopy. With the green manuring milk vetch at flowering period (MVFP), the DOC and water-soluble cadmium (WS-Cd) in soil solution reached 1875 mg/l and 2.64 μg/l, respectively, on day 6 after manuring. The PARAFAC analysis modeled three components: protein-like (tryptophan) and two humic-like components (humic acid and fulvic acid); DOM produced by MVFP was primarily protein-like during the early stage of decomposition. The aromaticity and molecular weight of DOM in the MVFP treatment was lower than in the other treatments, which could promote the release of soil particle-adsorbed Cd to soil solution. Principal components analysis showed that aromaticity was the main factor affecting Cd solubility, and the negative linear correlation of aromaticity with WS-Cd reached 0.4827. The results of this study supported the idea that manuring with MVFP might accelerate Cd infiltration to deep soil with water under gravity.
Show more [+] Less [-]Source identification of combustion-related air pollution during an episode and afterwards in winter-time in Istanbul Full text
2019
Kuzu, S Levent
Conventional air pollutants (PM₁₀, CO, NOₓ) gradually increased from fall to winter during 2015 in Istanbul. Several air pollution episodes were observed during this period. This study was made in order to determine polycyclic aromatic hydrocarbon (PAH) levels, identify the sources of air pollution, and make toxicity assessment based on Benzo(a)pyrene equivalent concentrations. The sampling took 14 sequential days during winter. High-pressure weather conditions prevailed at the start of the sampling. The conditions were then changed to low-pressure condition towards the end of the sampling. Strong inversion was effective on the onset of the sampling. Strong inversion was effective at the onset of the sampling. A high-volume sampler was used to collect gas and particle phase samples. Total suspended particle concentrations were between 27 and 252 μg m⁻³. Sixteen PAH species were investigated. Total (gas + particle) PAH concentrations were between 76.4 and 1280.3 ng m⁻³, with an average of 301.4 ng m⁻³. Individual PAH concentrations were between not detected (n.d.) and 99.2 ng m⁻³ in the gaseous phase, and between n.d. and 11.5 ng m⁻³ in the particle phase. Phenanthrene had the highest share among 16 PAH compounds. Benzo(a)pyrene was not detected in 8 days. On the remaining days, its concentration ranged between 5.5 and 14.8 ng m⁻³ with an average of 3.7 ng m⁻³. Low-molecular-weight PAHs dominated gaseous phase; inversely, high-molecular-weight PAHs dominated particle phase. Possible sources were identified by diagnostic ratios. These ratios suggested that coal combustion and diesel vehicle exhaust emissions had a substantial impact on ambient air quality. Benzo(a)pyrene equivalencies were calculated for each PAH compound in order to make toxicity assessment. Total benzo(a)pyrene equivalencies ranged between 0.4 and 30.0 ng m⁻³ with an average of 7.2 ng m⁻³.
Show more [+] Less [-]Cyto(geno)toxicity of Commercial Fungicides Based on the Active Compounds Tebuconazole, Difenoconazole, Procymidone, and Iprodione in Lactuca sativa L. Meristematic Cells Full text
2019
Aragão, Francielen Barroso | Bernardes, Paula Mauri | Ferreira, Adésio | Ferreira, Marcia Flores da Silva | Andrade-Vieira, Larissa Fonseca
The present work aimed to evaluate the effects of commercial fungicides containing the active compounds from the triazole group—tebuconazole (TBZ) and difenoconazole (DFZ)—and dicarboximide group—procymidone (PRD) and iprodione (IPD) on the mitotic cycle of the plant model Lactuca sativa L. These active compounds have been present in foods sampled at different Brazilian’s states and amounted higher than recommended by law. The bioassay with L. sativa was applied to access the toxicity and better understand the mechanisms of action of these compounds in living beings. The active principles IPD and DFZ presented mitodepressive effect, statistically reducing the MI at all applied concentrations in comparison to the negative control. TBZ was the most cytotoxic active compound tested inhibited in 77% mitotic active in the lowest concentration applied. PRD alter the frequency of mitotic cells only in the concentration above that recommended by the manufacture. C-metaphase and adherent chromosomes were the most frequent cell cycle alteration observed on the treated cells, followed by bridges and lost chromosomes. Therefore, the mechanism of action was mainly aneugenic (70%). For TBZ, the frequency of condensed nucleus was very expressive (313 higher than the negative control).
Show more [+] Less [-]Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates Full text
2019
Li, Na | Wang, Xiaoyan | Zhang, Hui | Chong, Tze Chien | Ding, Jincheng | Lu, Jie
Reverse osmosis (RO) technique plays an important role in the treatment of secondary biochemical effluent. However, the reverse osmosis concentrate (ROC) with high salinity and organic pollutants generated from this process remains a challenge to be tackled. The O₃-assisted UV-Fenton advanced oxidation process (AOP) as a pretreatment for the nanofiltration (NF) was used to treat the ROC of industrial wastewater. The optimal removal rates of COD and UV₂₅₄ were 80.4 and 77.4%, respectively. In the NF process, four types of commercial NF membranes (NF90 (Dow, USA), DK (GE, USA), NT101, and NT103 (NADIR, Germany)) were used to treat the AOP effluent. The effects of operating pressure and feed temperature on ion rejection were investigated. The results show that NF90 and NT103 membranes had better rejections to monovalent ions, while DK and NT101 membranes could effectively separate monovalent and divalent ions and their ion rejections decreased with the increase of feed temperature. With the NF90 membrane, the highest TDS removal rate of 89.65% was obtained at the operating pressure of 1.2 MPa.
Show more [+] Less [-]Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles Full text
2019
Li, Yujiao | Yang, Zhimin | Chen, Yucheng | Huang, Lei
Adsorption plays an important role in removing cadmium (Cd²⁺) from water, and magnetic adsorbents are increasingly being used due to their ease of separation and recovery. Magnetic Fe₃O₄–coated hydroxyapatite (HAP) nanoparticles (nHAP-Fe₃O₄) were developed by co-precipitation and then used for the removal of Cd²⁺ from water. The properties of these nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and magnetization curves. Experiments were conducted to investigate the effects of adsorption and mechanisms. Results illustrated that kinetic data were well fitted by a pseudo-second-order model. The adsorption capacity of nHAP-Fe₃O₄ was 62.14 mg/g. The mechanisms for the adsorption of Cd²⁺ on nHAP-Fe₃O₄ included rapid surface adsorption, intraparticle diffusion, and internal particle bonding, with the ion exchange with Ca²⁺ and chemical complexation being the most dominant. The regeneration efficiency and recovery rate of nHAP-Fe₃O₄ eluted by EDTA-Na₂ after the fifth cycle were 63.04% and 40.2%, respectively. Results revealed that the feasibility of nHAP-Fe₃O₄ as an adsorbent of Cd²⁺ and its environmental friendliness make it an ideal focus for future research.
Show more [+] Less [-]Catalytic Degradation of Humic Acid by Mn-Cu/Al-MCM-41 Catalyst in Electro-Fenton/Chlorine Processes: Influencing Factors, Mechanisms, and Kinetics Full text
2019
Liu, Zailiang | Meng, Hailing | Li, Chao | Liu, Tinglei | Cao, Jiashun | Lv, Yaohui
Degradation of humic acid (HA) in heterogeneous electro-Fenton/chlorine processes was investigated using a catalyst of Mn-Cu bimetallic oxides supported on Al-containing MCM-41. The catalyst was synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N₂ adsorption–desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The bimetallic oxide catalyst exhibited a higher activity compared to monometallic one. Adding Al in the bimetallic oxide catalyst enhanced the stability of the catalyst, reduced metal ion leaching, increased the initial ratio of Mn³⁺/Mn⁴⁺ and Cu⁺/Cu²⁺, and slightly enhanced the degradation efficiency of HA and corresponding chemical oxygen demand (COD). The effect of Mn and Cu content in MCM-41, catalyst dosage, pH value, and initial concentration of HA and salinity on degradation efficiency were investigated. A high COD reduction about 91.5% and general current efficiency (GCE) about 41.7% have been achieved under the optimal conditions of pH 6, salinity 1000 mg/L, catalyst dosage 0.5 g/L, HA sodium salt concentration 200 mg/L, and reaction time 60 min. A possible mechanism for the reaction was suggested. Kinetic analysis showed that HA degradation in the electro-Fenton/chlorine processes was fit with first-order kinetics.
Show more [+] Less [-]Equilibrium and Kinetic Study of Ammonium Sorption by Raphia farinifera Full text
2019
Staroń, Paweł | Sorys, Paulina | Chwastowski, Jarosław
The study investigated the sorption capacity of biosorbent-raphia sp. against ammonia. Raphia fibers were used without and with the modification of its surface with NaCl, NaNO₃, and K₂SO₄. The data was analyzed in the state of equilibrium using four isotherm models such as Langmuir, Freudlich, Temkin, and Dubinin-Radushkevich. The equilibrium of ammonia sorption for all studied systems was best described by the Freudlich isotherm model. On its basis, it can be assumed that the studied process is of chemical nature, which results from the value of the coefficient 1/n < 1. In order to confirm the sorption mechanism, analysis of the kinetics of the ammonia sorption process on raphia fibers was performed. Four kinetic models of sorption were calculated: pseudo-first-order model, pseudo-second-order model, Elovich model, and Webber-Morris intermolecular diffusion model. The sorption kinetics of the modeled ammonia waste were carried out using unmodified palm fibers and all kinds of surface modification. This process was best described by the pseudo-second-order sorption model, which can be considered as a confirmation of the chemical nature of ammonia sorption on raphia sp. fibers.
Show more [+] Less [-]Nitrogen Biogeochemistry of Anaerobic Biodegradation of Naphthalene Full text
2019
Zhang, Menghuan | Zhang, Fengjun | Ma, Zhe | Wan, Yuyu
A mixed community of bacteria was enriched from groundwater contaminated with naphthalene as the sole carbon source. Based on the results of 16S rRNA sequences, Acinetobacter and Pseudomonas were the predominant species in the naphthalene-enriched culture. Different initial forms of nitrogen, including nitrate, nitrite, and ammonium, were beneficial to naphthalene degradation, which was considered second-order kinetics and naphthalene could be decreased by 94.68% during the incubation period of 30 days with an initial naphthalene concentration of 0.5 mg/L. These clear biogeochemical denitrification signals, the consumption and accumulation of nitrate, nitrite, and ammonium during the incubation period, suggested that naphthalene degradation may be coupled with denitrification and DNRA metabolism. Nitrate and nitrite were reduced mainly as electron acceptors, and ammonium was utilized by microorganisms as an important inorganic nutrient for their growth and reproduction, which promoted the degradation of naphthalene. The results of this study contributed to the removal pathway and transformational mechanism of nitrogen and reveal their involvement in the anaerobic biodegradation of naphthalene.
Show more [+] Less [-]