Refine search
Results 2701-2710 of 4,896
Study on the efficiency of ultrafiltration technology in dealing with sudden cadmium pollution in surface water and ultrafiltration membrane fouling
2019
Meng, Qian | Nan, Jun | Wang, Zhenbei | Ji, Xiaoyu | Wu, Fangmin | Liu, Bohan | Xiao, Qiliang
In this paper, the application of ultrafiltration (UF) technology to treat cadmium (Cd) pollution in surface waters is investigated. The effect of the UF membrane molecular weight cut-off (MWCO), Cd ion (Cd²⁺) concentration, solution pH and ionic strength on the removal, and mass balance of Cd were explored. In addition, the effect of the solution pH on UF membrane fouling was analyzed. The results indicated that UF membranes with a low MWCO resulted in an improved Cd removal rate. In addition, as the Cd²⁺ concentration in feedwater increased, the Cd removal rate decreased, while the Cd concentration in the permeate increased. Since the solution pH and ionic strength had a notable impact on the Cd removal rate, a high pH value and low ionic strength led to a higher removal rate of Cd. Under optimal Cd removal conditions, UF reduced the influent Cd concentration from 1.0 to 0.019 mg/L. For membrane fouling, increasing the solution pH led to more serious membrane fouling. This phenomenon was the result of Cd²⁺ reacting with OH⁻ and forming a Cd (OH)₂ precipitate. The precipitate and humic acid formed compact cakes on the membrane surface and blocked membrane pores. These results provided adequate evidence for the higher removal of Cd with increasing solution pH. In addition, SEM images under different pH conditions were in agreement with the conclusion mentioned above, which provided further support for the effect of the solution pH on Cd removal and membrane fouling.
Show more [+] Less [-]Toxicological evaluation of nail polish waste discarded in the environment
2019
Felzenszwalb, Israel | Fernandes, Andreia da Silva | Brito, Lara Barroso | Oliveira, Gisele Augusto Rodrigues | Silva, Paula Aquino Soeiro | Arcanjo, Maria Elena | Marques, Monica Regina da Costa | Vicari, Taynah | Leme, Daniela Morais | Cestari, Marta Margarete | Ferraz, Elisa Raquel Anastacio
Nail polish has been widely used around the world. However, the hazards of nail polishes discarded in the environment are still poorly investigated. Thus, the toxicogenetic effects of solubilized (SE) and leached (LE) extracts from nail polishes were investigated, simulating their disposal on water and landfill, respectively, and identifying their physicochemical properties and chemical constituents. Organic compounds and metals were detected in both extracts. SE and LE only induced mutagenic effects in TA98 Salmonella strain in the presence and absence of exogenous metabolic activation. Although both extracts did not significantly increase the frequency of micronucleated HepG2 cells, the cell viability was affected by 24-h exposure. No DNA damage was observed in gonad fish cells (RTG-2) exposed to both extracts; however, the highest SE and LE concentrations induced significant lethal and sublethal effects on zebrafish early-life stages during 96-h exposure. Based on our findings, it can be concluded that if nail polishes enter aquatic systems, it may cause negative impacts to the environment.
Show more [+] Less [-]Toxicity of atrazine and the products of its homogeneous photocatalytic degradation on the aquatic organisms Lemna minor and Daphnia magna
2019
Klementová, Šárka | Hornychová, Lucie | Šorf, Michal | Zemanová, Jana | Kahoun, David
Usage of atrazine, a widely used herbicide, is now banned in many countries. Although forbidden to use, significant concentration of this herbicide is still present in the environment. The study focused not only on the toxicity of atrazine itself but also on products of homogeneous photocatalytic degradation. Such degradation was very fast in given conditions (sufficient amount of Fe(III) in the reaction system)—more than 95% of the initial amount of atrazine was eliminated after 30 min of irradiation. The toxicity of atrazine and its photodegradation products were examined on the aquatic plant Lemna minor and microcrustacean Daphnia magna in both acute and chronic tests. While the growth inhibition assay of atrazine for Lemna minor revealed EC₅₀ value of 128.4 μg dm⁻³, the herbicide did not affect Daphnia in the acute toxicity assay. A degradation product, desethyl-atrazine, has been demonstrated to have a pronounced negative effect on the plant growth. Both atrazine and desethyl-atrazine affect negatively the number of juveniles and number of clutches of Daphnia magna in the chronic toxicity assay. Photocatalytic degradation lowers the negative effect of atrazine in Daphnia magna while photodegradation products still negatively affect Lemna growth.
Show more [+] Less [-]Hairdressers are exposed to high concentrations of formaldehyde during the hair straightening procedure
2019
Pexe, Marcelo Eduardo | Marcante, Amanda | Luz, Maciel Santos | Fernandes, Pedro Henrique Manzani | Neto, Francisco Chiaravalloti | Sato, Ana Paula Sayuri | Olympio, Kelly Polido Kaneshiro
The fact that hairdressers are exposed to toxic substances through the handling of creams and smoothing products prompted this study whose aim was to quantify the occupational exposure of hairdressers to formaldehyde by comparing the results of exposure for different types of beauty salon. The study population consisted of 23 beauty salons located in the city of Bauru, São Paulo state, Brazil. The samples were collected by inhaled air tests during the most critical 15-min period of the hair straightening procedure and during the 8-h work shift. The concentrations of formaldehyde contained in the formulations of these products were also evaluated and compared with exposure levels. The results were evaluated according to the exposure limits prescribed in Brazilian (NR15) and North American (US OSHA and US NIOSH) standards. The analysis of the smoothing products showed concentrations of formaldehyde of between 3 and 11% in their compositions, i.e., up to 54 times above the 0.2% limit allowed by the National Agency of Sanitary Surveillance (ANVISA). The present study showed that hairdressers are chronically exposed to high concentrations of formaldehyde in the workplace and these exposures are mainly associated with the work process, where many variables of this process influence the intensity of exposure.
Show more [+] Less [-]Application of a stable carbon isotope for identifying Broussonetia papyrifera pollen
2019
Jung, Chien-Cheng | Lee, Chuan-Pin | Wang, Wen-Chi | Wu, Ming-Chee | Su, Huey-Jen
The objective of this study was to investigate whether δ¹³C values can be used to identify pollen specie in the atmosphere. A Burkard 7-day recording volumetric spore trap was used to collected pollens in the atmosphere in Tainan City, Taiwan, from January 2 to December 28, 2006, and a light microscope was used to identify the pollen species and concentrations. A Burkard cyclone sampler was used to collect particulate matter and an elemental analyzer with an isotope ratio mass spectrometer was used to analyze the δ¹³C values. Our data showed that the predominate pollen specie in the atmosphere was Broussonetia papyrifera pollen and that the annual average concentration was 27 grains/m³ (pollen season, 36; nonpollen season, 9 grains/m³). The average δ¹³C value was − 26.19‰ for particulate matter in the atmosphere (pollen season, − 26.00‰; nonpollen season, − 26.28‰). No significant association was observed between δ¹³C values and Broussonetia papyrifera pollen concentrations. However, the δ¹³C value in the atmosphere was associated with the levels of Broussonetia papyrifera pollen among the samples with a diameter of particulate matter smaller than 10 μm at a level lower than 40 μg/m³. In addition, the relative contribution of Broussonetia papyrifera pollen to the carbon in the atmosphere using a two end-member mixing models was found to be associated with the Broussonetia papyrifera pollen concentration. In summary, our study suggested that δ¹³C values can be applied in the assessment of Broussonetia papyrifera pollen specie under specific conditions in the atmosphere.
Show more [+] Less [-]Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction
2019
Wang, Mengyun | Wang, Daiyao | Qiu, Shiyi | Xiao, Junyang | Cai, Huahua | Zou, Jing
In this study, a sensitive and low-cost multi-wavelength spectrophotometric method for the determination of hydrogen peroxide (H₂O₂) in water was established. The method was based on the oxidative coloration of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) via Fenton reaction, which resulted in the formation of green radical (ABTS•⁺) with absorbance at four different wavelengths (i.e., 415 nm, 650 nm, 732 nm, and 820 nm). Under the optimized conditions (CABTS = 2.0 mM, CFₑ²⁺ = 1.0 mM, pH = 2.60 ± 0.02, and reaction time (t) = 1 min), the absorbance of the generated ABTS•⁺ at 415 nm, 650 nm, 732 nm, and 820 nm were well linear with H₂O₂ concentrations in the range of 0–40 μM (R² > 0.999) and the sensitivities of the proposed Fenton-ABTS method were calculated as 4.19 × 10⁴ M–¹ cm–¹,1.73 × 10⁴ M–¹ cm–¹, 2.18 × 10⁴ M–¹ cm–¹, and 1.96 × 10⁴ M–¹ cm–¹, respectively. Meanwhile, the detection limits of the Fenton-ABTS method at 415 nm, 650 nm, 732 nm, and 820 nm were respectively calculated to be 0.18 μM, 0.12 μM, 0.10 μM, and 0.11 μM. The absorbance of the generated ABTS•⁺ in ultrapure water, underground water, and reservoir water was quite stable within 30 min. Moreover, the proposed Fenton-ABTS method could be used for monitoring the variations of H₂O₂ concentration during the oxidative decolorization of RhB in alkali-activated H₂O₂ system.
Show more [+] Less [-]Soil Microbial Metabolic Activity and Community Structure in Drip-Irrigated Calcareous Soil as Affected by Irrigation Water Salinity
2019
Guo, Huijuan | Hu, Zhiqiang | Zhang, Huimin | Hou, Zhenan | Min, Wei
Saline water irrigation can dramatically change the soil environment and thereby influence soil microbial processes. The objective of this field experiment was to use Biolog and high-throughput sequencing methods to evaluate the metabolic activity and community structure of soil microorganisms after 9 years of saline water irrigation. The results showed that brackish and saline water irrigation significantly increased soil bulk density and salinity, but significantly decreased soil pH, TN, SOM, MBC, and metabolic activity. The Biolog tests of sole-carbon-source utilization indicated that the brackish and saline water treatments significantly reduced the utilization of four carbohydrate sources (D-cellobiose, β-methyl-d-glucoside, D-mannitol, and glucose-1-phosphate), two amino acid sources (L-asparagine and glycyl-L-glutamic acid), two carboxylic acid sources (D-galacturonic acid and D-malic acid), and two polymer sources (Tween 80 and glycogen). Brackish and saline water increased soil bacterial richness (ACE and Chao 1 indices) but had no effect on which bacterial phyla were present. Brackish and saline irrigation water significantly increased the relative abundance of four dominant bacterial phyla (Gemmatimonadetes, Actinobacteria and Chloroflexi, Saccharibacteria). In contrast, the relative abundance of five dominant phyla (Proteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia) was reduced by brackish and saline irrigation water. Our study suggests that soil bacterial community will form significant differences species under different irrigation water salinity, which can adapt to saline stress by adjusting the species composition. The results of this study increase understanding about the potential effects of saline water irrigation on soil biological processes.
Show more [+] Less [-]Multi-response optimization to obtain better performance and emission level in a diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive
2019
Vellaiyan, Suresh | Subbiah, Arunkumar | Chockalingam, Prabha
The present study aims to investigate the optimum condition of stationary diesel engine’s operating parameters to obtain better performance and emission level, where the diesel engine is fueled with different concentrations of soybean biodiesel (SB), water, and alumina (Al) nanoadditive. Taguchi method coupled with gray relational analysis has been implemented in this study to obtain the optimum concentration of SB, water, and Al nanoparticle, and statistical analysis of variance (ANOVA) is applied to obtain the individual response of operating parameters on overall engine performance and emission level. Various concentration of SB (10%, 20%, and 30%), water (10%, 20%, and 30%), and Al nanoparticle (50 ppm, 100 ppm, and 150 ppm) are mixed with base diesel (BD) by mechanical agitation and followed by an ultra-sonication process. The fuel properties are measured based on EN590 standards, and the experiments are conducted in a single-cylinder, four-stroke, natural aspirated stationary diesel engine based on an L₉ orthogonal array fuel combination. From the obtained gray relational co-efficient (GRC) and signal-to-noise (S/N) ratio, the optimum concentration of SB, water, and nanoadditive are identified as 20%, 10%, and 100 ppm, respectively, and a confirmation experiment has also been carried out to confirm the improvements at optimum condition. The ANOVA results imply that water concentration (WC) has the maximum influence on overall diesel engine’s performance and emission level followed by nanoparticle and SB concentrations. Overall, it can be concluded that the engine exhibits better performance and greener emissions at optimal condition.
Show more [+] Less [-]Characteristics of N2O Emission in Distilled Water and Activated Sludge Mixture
2019
Ding, Xiaoqian | Zhao, Jianqiang | Hu, Bo | Wang, Sha | Gao, Kun | Zhao, Rixiang
To investigate the emission characteristics of the dissolved N₂O in distilled water and activated sludge mixture, the total volume mass transfer coefficients of N₂O in distilled water and activated sludge mixture were determined by batch experiments. The results indicated a difference between emission processes of N₂O in distilled water and activated sludge mixture. At different initial N₂O concentrations, the total volume mass transfer coefficients of N₂O in distilled water were relatively stable, while the total volume mass transfer coefficients of N₂O in activated sludge mixture increased with increasing initial N₂O concentrations, due to endogenous denitrification by microorganisms in the mixture. Since N₂O was reduced and consumed by heterotrophic bacteria in activated sludge, biochemical reactions were involved in the transfer process of N₂O escaping from the mixture to the atmosphere. Therefore, use of distilled water was suggested to determine the total volume mass transfer coefficient in experiments calculating N₂O emission rates for biological nitrogen removal processes.
Show more [+] Less [-]Inverse associations of bisphenol A and phthalate metabolites with serum bilirubin levels in Korean population
2019
Choi, Yoonjeong | Yi, Sŏn-ju | Jeon, Jooeun | Jung, Keum Ji | Jee, Sun Ha
Bisphenol A (BPA) and phthalates are endocrine disruptors that can induce oxidative stress. Serum bilirubin has antioxidant properties and may serve as a biomarker of oxidative stress. The objective of this study was to explore the relationship of BPA and phthalates with serum bilirubin levels in a Korean population. Urinary concentrations of BPA and six phthalate [mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono-benzyl phthalate (MBzP)] were measured in 709 participants. Serum concentrations of BPA and three phthalate metabolites [MnBP, MiBP, and mono-(2-ethylhexyl) phthalate (MEHP)] were measured in 752 participants. After excluding missing variables, associations between above chemicals and serum bilirubin levels were analyzed using multivariate linear regression with age, sex, BMI, GGT, GOT, GPT, and alcohol intake adjustment. Participants were further stratified by sex. Among the urinary chemicals, BPA and four phthalate metabolites (MnBP, MEOHP, MEHHP and MECPP) were inversely associated with serum bilirubin levels (BPA: β = − 0.071, P < 0.0001; MnBP: β = − 0.055, P = 0.025; MEOHP: β = − 0.101, P < 0.0001; MEHHP: β = − 0.106, P < 0.0001; MECPP: β = − 0.052, P = 0.003). In a case of serum chemicals, only MiBP showed significantly positive association (β = 0.036, P = 0.016). After stratification by sex, the associations of urinary BPA remained both in male and female, of which urinary phthalates disappeared in female. The association of serum MiBP was disappeared after stratification. Urinary BPA and phthalate metabolites were inversely associated with serum bilirubin levels, whereas serum MiBP showed positive association with bilirubin. These results could provide clues for understanding the mechanisms of endocrine disruptor from oxidative stress to excretion from our body.
Show more [+] Less [-]