Refine search
Results 2721-2730 of 4,935
Influence of Heavy Metals on Seed Germination and Seedling Growth of Wheat, Pea, and Tomato Full text
2019
Baruah, Nijara | Mondal, Subham C. | Fārūq, Muḥammad | Gogoi, Nirmali
Experiments were conducted under lead (Pb), cadmium (Cd), and copper (Cu) exposure to observe germination and seedling growth of wheat (Triticum aestivum L), pea (Pisum sativum), and tomato (Solanum lycopersicum L.). Metals were applied in five concentrations (20, 65, 110, 175, and 220 ppm) and Hoagland solution was used to feed the seedlings. Irrespective of the tested crop seeds, copper revealed maximum effect (51.2%) on germination followed by lead (47.5%) and cadmium (35.3%). Tomato seeds were most sensitive in germination stage followed by pea and wheat. In seedling stage, tomato also showed highest sensitivity to both Cd and Cu. However, pea seedlings showed higher tolerance to Pb and wheat seedlings had the highest tolerance to both Cu and Cd. Toxicity and tolerance of metals was found to vary with crops and growth stages. Higher transfer of metals (Pb, Cd, and Cu) in wheat seedling indicates higher risk of food chain contamination when grown in polluted soil. Higher mobility and uptake of Cd in tomato and wheat seedlings even under lower concentration of exposure needs further study.
Show more [+] Less [-]Adsorption Removal of Cr(VI) with Activated Carbon Prepared by Co-pyrolysis of Rice Straw and Sewage Sludge with ZnCl2 Activation Full text
2019
Fan, Liangqian | Wan, Wenxin | Wang, Xianda | Cai, Jie | Chen, Fenghui | Chen, Wei | Ji, Lin | Luo, Hongbing | Cheng, Lin
In the study, an activated carbon was prepared by co-pyrolyzing rice straw and sewage sludge with ZnCl₂ activation (SS-RS AC) and used to remove Cr(VI) from wastewater. Firstly, for the preparation of SS-RS AC, the yield and iodine number were used to determine the appropriate addition percentage of rice straw. Then, a series of batch experiments including initial pH, adsorption kinetics and isotherms, and ionic strength as well as Fourier transform infrared (FT-IR) analysis of SS-RS AC before and after adsorption were performed to explore the Cr(VI) adsorption removal behavior and mechanism of SS-RS AC prepared from sewage sludge with the appropriate rice straw addition percentage. The results showed that the appropriate addition percentage of rice straw was 20%. For the Cr(VI) adsorption removal with SS-RS AC, the initial pH of solution significantly influenced the removal efficient. The highest efficiency of Cr(VI) adsorption removal (97.7%) could be attained at pH 2.0. The adsorption kinetics and isotherm data were best fitted by the pseudo-second-order model and the Langmuir-Freundlich model, respectively. The prepared SS-RS AC had the maximum Cr(VI) adsorption removal capacity of 138.69 mg/g at 40 °C. The main mechanisms for the Cr(VI) removal with SS-RS AC involve the electrostatic attraction and the reduction of Cr(VI). Carboxy, amine, and hydroxyl groups were found to act as electron donor groups, contributing to the reduction of Cr(VI). The ionic strength had an adverse effect on the Cr(VI) removal. Overall, the prepared SS-RS AC can be used as an alternative and low-cost adsorbent for the removal of Cr(VI).
Show more [+] Less [-]Evaluation of the 17-α-Ethinyl Estradiol Sorption Capacity in Soil Full text
2019
de Oliveira, Renan Angrizani | Tardelli, Edgard Robles | Jozala, Angela Faustino | Grotto, Denise
17-α-Ethinyl estradiol (EE2) is a widely used drug that acts in the endocrine system and in the environment; even at low concentrations, it causes extensive damage to organisms. The most relevant factors for understanding the EE2 degradation and transport mechanisms in soil are through sorption studies. This study investigated the sorption capacity of EE2 in soil collected amidst vegetation in the region of Sorocaba, São Paulo state, Brazil. The soil samples were submitted to the evaluation of the physical-chemical parameters to characterization. The zero point of charge test (ZPC) was run using the adapted method of the 11-point model. Kinetic tests were then carried out, varying the removal times of the samples with fixed EE2 concentration, whereas, for the isotherm tests, the concentrations were varied, and the fixed contact time was maintained. The final concentrations of EE2 were quantified by high-performance liquid chromatography. Data treatments were carried out using mathematical modeling tests present in the literature. The soil presented a medium texture, being predominantly sandy, and the chemical parameters were classified as high and medium. Only the pH parameter was classified as low. The ZPC was 5.57, indicating an adsorption favorable to the EE2 that presented an average pH of 5.73. The adsorption kinetics showed that the equilibrium time for EE2 in contact with the soil is 12 h. The adsorption isotherm presented values related as favorable and adjustable to the Sips isotherm model and estimated the maximum adsorption capacity of 154.2 mgEE₂ Kgₛₒᵢₗ⁻¹, showing affinity with EE2.
Show more [+] Less [-]Simultaneous degradation of trichlorfon and removal of Cd(II) by Aspergillus sydowii strain PA F-2 Full text
2019
Zhang, Chao | Tao, Yue | Li, Shuangxi | Tian, Jiang | Ke-tan, | Wei, Sijie | Wang, Panpan | Chen, Lanzhou
Co-contamination with heavy metals and pesticides is a severe environmental problem, but little information is available regarding the simultaneous removal of these pollutants. In this study, we showed that Aspergillus sydowii strain PA F-2 isolated from soil contaminated with heavy metal and pesticides can simultaneously degrade trichlorfon (TCF) and adsorb Cd(II) from mineral salt medium. The maximum removal rates for TCF and Cd(II) were 55.52% and 57.90%, respectively, in the treatment containing 100 mg L⁻¹ TCF and 2 mg L⁻¹ Cd(II). As the initial Cd(II) concentration increased (2, 5, and 10 mg L⁻¹), the PA F-2 biomass, TCF degradation rate, and Cd(II) adsorption efficiency decreased, whereas the Cd(II) adsorption capacity by PA F-2 increased. The addition of exogenous glucose and sucrose significantly increased the PA F-2 biomass as well as the removal of TCF and Cd(II). Moreover, the TCF degradation pathway and Cd(II) adsorption mechanism were investigated by gas chromatography–mass spectrometry, scanning electron microscopy, and Fourier transform infrared spectroscopy. These results suggest that PA F-2 has potential applications in the bioremediation of TCF and Cd(II) co-contamination.
Show more [+] Less [-]The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region Full text
2019
Gao, Ruxue | Dai, Quanhou | Gan, Yixian | Peng, Xudong | Yan, Youjin
Nitrogen loss in karst sloping farmland will lead to declining land productivity and environmental pollution, in which the nitrogen loss through underground pore fissures will directly lead to groundwater pollution. The characteristics of total nitrogen (TN) production were studied by simulating the “dual structure” microenvironment of sloping farmland in a karst region using an artificial rainfall simulation method. The results show that rainfall was the main driving factor of TN loss in karst sloping farmland. TN was mainly lost through underground pore fissures when the rainfall intensity was ≤ 30 mm · h⁻¹. TN was lost at the surface and underground when the rainfall intensity was ≥ 50 mm · h⁻¹, TN loss on the surface accounted for a large proportion, and the surface flow was the main carrier of TN loss. The TN loss underground is easily ignored because it is hidden underground. Therefore, TN loss belowground in karst sloping farmland should receive increased attention. It would be interesting to explore the influences of connectivity and type of underground pore fissure system on TN loss in karst sloping farmland. The prevention and control of TN loss in karst sloping farmland should be considered both at the surface and underground. Reducing the formation of slope flows and slowing rainwater filtration by increasing slope vegetation coverage can be considered to reduce TN loss. The results of this study provide a theoretical reference for agricultural non-point source pollution control in a karst region. Graphical abstract
Show more [+] Less [-]Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils Full text
2019
Wang, Yifan | Li, Ruizhen | Liu, Wenzhu | Cheng, Li | Jiang, Qun | Zhang, Ying
This study was aimed to investigate the adsorption and fixation effects of hydroxyapatite (HAP) on lead-contaminated soil. According to the experimental results, the microstructure of hydroxyapatite was observed by a scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) showed that OH⁻ and PO₄³⁻ were the main functional groups in HAP. Optimum adsorption conditions of Pb²⁺ were obtained: 0.2 g/L, adsorbent; initial solution pH of 5.5; and contact time of 120 min. The kinetic adsorption experiments were carried out with the initial lead solution concentrations of 50 mg/L, 150 mg/L, and 250 mg/L. The kinetics fitting was consistent with the pseudo-second-kinetic model, which indicated that the main process of HAP adsorption of Pb²⁺ was mainly controlled by surface reactions and chemical reactions. The adsorption isotherms had a satisfactory fit with the Langmuir model, which indicated that the adsorption of Pb²⁺ by HAP was a monolayer adsorption. According to the experimental results, ion exchange, phosphorus supply, precipitate, and complexation are the main immobilization mechanisms for soil remediation with HAP. In remediation of Pb²⁺-contaminated soil experiments, the adsorption rate of Pb²⁺ by HAP was significantly higher than that of non-HAP soil with increasing immobilization days. With the increasing addition of HAP, the weak acid soluble (WA), reducible (RED), oxidizable (OX), and water soluble (WS) are transformed into residue (RES). The application of HAP in contaminated soil effectively reduced the leachable and exchangeable Pb²⁺, indicating that HAP is a potential material for remediating environmental pollution with Pb²⁺.
Show more [+] Less [-]Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.) Full text
2019
Wan, Yanan | Wang, Kang | Liu, Zhe | Yu, Yao | Wang, Qi | Li, Huafen
Cadmium (Cd) is absorbed readily by rice plants and is transferred to humans when contaminated rice is consumed. Adding selenium (Se) to the plant nutrient solutions reduces the accumulation of Cd in the rice (Oryza sativa L.) seedlings. However, as the relevant underlying mechanism remains unclear, the aim of our study was to improve our understanding of the Se-mediated resistance to Cd stress in rice. We conducted hydroponic experiments to study the effects of selenite or selenate on Cd subcellular distribution and xylem transport in rice seedlings under Cd stress, and we investigated the antioxidative defense responses in the rice plants. We found that the supplementation of both Se forms decreased the Cd accumulations in the roots and shoots of the rice plants. The selenite addition significantly decreased the Cd contents in different subcellular fractions of the rice roots, increased the proportion of Cd distributed to soluble cytosol by 23.41%, and decreased the Cd distribution in the organelle by 28.74% in contrast with the treatment with Cd only. As regards the selenate addition, only the Cd distribution ratio of cytosol was increased by 13.07%. After adding selenite, a decrease of 55.86% in the Cd concentration in xylem sap was observed, whereas little change was found after treatment co-applied with selenate. The hydrogen peroxide (H₂O₂) and malondialdehyde(MDA) contents in the rice roots were elevated under Cd stress, and the addition of selenite and selenate decreased the H₂O₂ levels by 77.78% and 59.26%, respectively. Co-exposure to Cd and Se elevated the glutathione (GSH) accumulations in the rice shoots and roots, with the degree of increase being the following: co-applied with selenite > co-applied with selenate > Cd alone treatment. Exposure to Cd increased the catalase (CAT) activity in the roots significantly, whereas it decreased in the shoots. After selenite or selenate supplementation, the CAT activity in the rice roots increased compared with applying only Cd. Compared with the control, the addition of Cd or Se had no significant effect on the activities of peroxidase (POD) or ascorbate peroxidase (APX). Our results showed that Se affected the Cd accumulation in rice seedlings by altering the Cd subcellular distribution and decreasing the ROS induced by Cd stress. Such effects were more significant in the selenite than in the selenate applied treatment.
Show more [+] Less [-]Identification of environmental factors controlling phosphorus fractions and mobility in restored wetlands by multivariate statistics Full text
2019
Cui, Hu | Ou, Yang | Wang, Lixia | Wu, Haitao | Yan, Baixing | Han, Lu | Li, Yingxin
Phosphorus is a dominant environmental factor in fostering eutrophication, and its biogeochemical behavior has attracted much attention. This study investigated the distribution of phosphorus fractions and the adsorption-desorption characteristic in the soils of wetlands converted from paddy fields with a restoration duration of 1, 2, 3, 5, 13, or 19 years. The results demonstrated the content of total phosphorus (TP) first increased, which was then reversed until the process stabilized after 5 restoration years. Labile inorganic phosphorus (L-Pi), labile organic phosphorus (L-Po), iron-aluminum–bound phosphorus (Fe.Al-P), and humic phosphorus (Hu-P) peaked at 1–3 restoration years, respectively, while moderately labile organic phosphorus (Ml-Po), calcium-magnesium–bound phosphorus (Ca.Mg-P), and residual phosphorus (Re-P) decreased within 0–5 restoration years. During the 5th to 19th restoration years, the contents of all phosphorus fractions stabilized within a minor fluctuating range. Redundancy analysis (RDA) results indicated that total nitrogen (TN) and soil organic matter (SOM) are the important environmental factors controlling redistribution of phosphorus fractions. The capability of restored wetlands to retain phosphorus increased first and then decreased with the extension of the restoration duration. Path analysis (PA) results demonstrated that pH, TN, and Fe are the primary factors for the capacity of soil to retain phosphorus, followed by SOM, Mn, and electrical conductivity(EC). Fe.Al-P and Hu-P had a higher release risk with approximate amounts of 197.25–337.25 and 113.28–185.72 mg/kg during the first stage of restoration, which needs to be focused.
Show more [+] Less [-]Characteristics of incineration ash for sustainable treatment and reutilization Full text
2019
Phua, Zhenghui | Giannis, Apostolos | Dong, Zhi-Li | Lisak, Grzegorz | Ng, Wun Jern
Municipal solid waste incineration (MSWI) generates bottom ash, fly ash (FA), and air pollution control (APC) residues as by-products. FA and APC residues are considered hazardous due to the presence of soluble salts and a high concentration of heavy metals, and they should be appropriately treated before disposal. Physicochemical characterization using inductively coupled plasma mass spectroscopy (ICP-MS), X-ray diffraction (XRD), and X-ray fluorescence (XRF) have shown that FA and APC have potential for reuse after treatment as these contain CaO, SiO₂, and Al₂O₃. Studies conducted on treatment of FA and APC are categorized into three groups: (i) separation processes, (ii) solidification/stabilization (S/S) processes, and (iii) thermal processes. Separation processes such as washing, leaching, and electrochemical treatment improve the quality and homogeneity of the ash. S/S processes such as chemical stabilization, accelerate carbonation, and cement solidification modify hazardous species into less toxic constituents. Thermal processes such as sintering, vitrification, and melting are effective at reducing volume and producing a more stable product. In this review paper, the treatment processes are analyzed in relation to ash characteristics. Issues concerning mixing FA and APC residues before treatment, true treatment costs, and challenges are also discussed to provide further insights on the implications and possibilities of utilizing FA and APC as secondary materials.
Show more [+] Less [-]Chelators induced uptake of cadmium and modulation of water relation, antioxidants, and photosynthetic traits of maize Full text
2019
Anwar, Sumera | K̲h̲ān, Shahbāz | Hussain, Iqbal | Bashir, Rohina | Shah, Fahad
The present study was aimed to reveal the effect of cadmium (Cd)-polluted soil on the activation of antioxidant enzymes, photosynthesis, pigments, water relation, and other biochemical traits and comparative effect of synthetic and organic chelators. A pot experiment was conducted using two maize varieties grown in Cd-contaminated (15 and 30 mg kg⁻¹) soil and chelators (1 mM EDTA, and 1 mM citric acid). Cd decreased biomass and photosynthetic traits while increased malondialdehyde (MDA) contents, total proteins, and antioxidant enzyme activities. Addition of EDTA enhanced Cd uptake, antioxidative enzyme, and total proteins; however, it reduced the water, osmotic, and turgor potential as compared to Cd alone. Addition of citric acid has lessened the antioxidant enzyme activities and MDA contents and enhanced the plant biomass as compared to Cd alone. Increases in antioxidants and MDA content were found to be positively related to the Cd contents in shoot and root. The application of citric acid significantly alleviated the Cd-induced toxic effects, showing remarkable improvement in biomass. These results indicated that EDTA was more effective for mobilizing Cd from soil to the root and shoot than citric acid; however, the physiological traits and plant biomass were more strongly inhibited by EDTA than by the Cd. Our study implies that citric acid ameliorated the negative effect of Cd on physiological traits and biomass, and hence could be used effectively for Cd phytoextraction.
Show more [+] Less [-]