Refine search
Results 2771-2780 of 3,208
A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments Full text
2015
Fermo, Paola | Turrion, Raquel Gonzalez | Rosa, Mário | Omegna, Alessandra
The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon—TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.
Show more [+] Less [-]When are total concentrations not total? Factors affecting geochemical analytical techniques for measuring element concentrations in soil Full text
2015
McIlwaine, Rebekka | Cox, Siobhan F. | Doherty, Rory
Inductively coupled plasma (ICP) following aqua regia digestion and X-ray fluorescence (XRF) are both geochemical techniques used to determine ‘total’ concentrations of elements in soil. The aim of this study is to compare these techniques, identify elements for which inconsistencies occur and investigate why they arise. A study area (∼14,000 km²) with a variety of total concentration controls and a large geochemical dataset (n = 7950) was selected. Principal component analysis determined underlying variance in a dataset composed of both geogenic and anthropogenic elements. Where inconsistencies between the techniques were identified, further numerical and spatial analysis was completed. The techniques are more consistent for elements of geogenic sources and lead, whereas other elements of anthropogenic sources show less consistency within rural samples. XRF is affected by sample matrix, while the form of element affects ICP concentrations. Depending on their use in environmental studies, different outcomes would be expected from the techniques employed, suggesting the choice of analytical technique for geochemical analyses may be more critical than realised.
Show more [+] Less [-]The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn Full text
2015
Mufarrege, M. M. | Hadad, H. R. | Di Luca, G. A. | Maine, M. A.
The tolerance and removal efficiency of Typha domingensis exposed to high concentrations of Cr, Ni, and Zn in single and combined treatments were studied. Sediment and two plants were disposed in each plastic reactor. The treatments were 100 and 500 mg L⁻¹ of Cr, Ni, and Zn (single solutions); 100 mg L⁻¹ Cr + Ni + Zn (multi-metal solutions) and 500 mg L⁻¹ Cr + Ni + Zn (multi-metal solutions); and a control. Even though the concentrations studied were extremely high, simulating an accidental metal dump, the three metals were efficiently removed from water. The highest removal was registered for Cr. The presence of other metals favored Cr and did not favor Ni and Zn removal from water. After 25 days, senescence and chlorosis of plants were observed in Ni and Comb500 treatments, while Cr and Zn only caused growth inhibition. T. domingensis accumulated high metal concentrations in tissues. The roots showed higher metal concentration than submerged parts of leaves. Cr translocation to aerial parts was enhanced by the presence of Ni and Zn. Our results demonstrate that in the case of an accidental dump of high Cr, Ni, and Zn concentrations, a wetland system dominated by T. domingensis is able to retain metals, and the macrophyte is able to tolerate them the time necessary to remove them from water. Thus, the environment will be preserved since the wetland would act as a cushion.
Show more [+] Less [-]Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India Full text
2015
Mazumdar, Kisholay | Das, Suchismita
In order to assess the potential of wetland plants to remediate metals from a paper mill effluent contaminated wetland site in Northeast India, 25 abundant plant species belonging to 15 different families, soil, and water samples from the sites were tested for Pb, Zn, Mg, and Fe by atomic absorption spectrophotometer. The results showed that metal accumulation by wetland plants differed among species and tissues. Plants thrived in high Pb, Zn, Mg, and Fe which indicated their tolerance. According to the criteria used for selecting plants for phytoremediation such as high metal tolerance, short life cycle, wide distribution, large shoot biomass and translocation factor (TF) >1; five species each were Mg and Fe accumulators, nine species were Pb accumulators and, eight species were Zn accumulators and the rest were excluders. Alternanthera sessilis was the only plant species that had TF > 1 for all the four metals. The study indicated great promise for phytoremediation, as these accumulators could be used in future for practical phytoremediation approaches and reduction of the risk from harmful metals to human health.
Show more [+] Less [-]Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin Full text
2015
Tang, Aixing | Wang, Bowen | Liu, Youyan | Li, Qingyun | Tong, Zhangfa | Wei, Yingjun
Pseudomonas aeruginosa strain GF31, isolated from a contaminated soil, can effectively degrade β-cypermethrin (β-CP), as well as fenpropathrin, fenvalerate, and cyhalothrin. The highest level of degradation (81.2 %) was achieved with the addition of peptone. Surprisingly, the enzyme responsible for degradation was mainly localized to the extracellular areas of the bacteria, in contrast to the other known pyrethroid-degrading enzymes, which are intracellular. Although intact bacterial cells function at about 30 °C for biodegradation, similar to other degrading strains, the crude extracellular extract of strain GF31 remained biologically active at 60 °C. Moreover, the extract fraction showed good storage stability, maintaining >50 % of its initial activity following storage at 25 °C for at least 20 days. Significant differences in the characteristics of the crude GF31 extracellular extract compared with the known pyrethroid-degrading enzymes indicate the presence of a novel pyrethroid-degrading enzyme. Furthermore, the identification of 3-phenoxybenzoic acid and 2,2-dimethylcyclopropanecarboxylate from the degradation products suggests the possibility that β-CP degradation by both the strain and the crude extracellular fraction is achieved through a hydrolysis pathway. Further degradation of these two metabolites may lead to the development of an efficient method for the mineralization of these types of pollutants.
Show more [+] Less [-]Effects of vitamin D on insulin secretion and glucose transporter GLUT2 under static magnetic field in rat Full text
2015
Lahbib, A | Ghodbane, S | Louchami, K | Sener, A | Sakly, M | Abdelmelek, H
The present study investigated the effects of vitamin D supplementation on insulin secretion and glucose transporter following static magnetic field (SMF) exposure in rat. Wistar male rats were divided into the following groups: control, SMF-exposed rat (128 mT; 1 h/day for 5 days), vitamin D-treated rats (1600 IU/100 g, received by gavage for five consecutive days), and co-exposed rats (the last day and after exposure rats received a single dose of vitamin D per os). Our results showed that exposure to SMF induced an increase in plasma glucose level and a decrease in plasma insulin concentration. Moreover, β cell insulin content and islet area were lower in SMF-exposed group compared to control. Likewise, we reported the absence of GLUT2 expression in extracellular membrane of pancreatic islet in SMF-exposed group. Interestingly, supplementation with single dose of vitamin D per os corrected insulinemia and glycemia disturbances caused by SMF. By contrast, the same treatment failed to correct pancreatic area. This study provides evidence that vitamin D supplementation has curative effect on pancreas insulin content and on GLUT2 disruption caused by SMF exposure.
Show more [+] Less [-]Estimation of nutrient sources and transport using Spatially Referenced Regressions on Watershed Attributes: a case study in Songhuajiang River Basin, China Full text
2015
Li, Xue | Wellen, Christopher | Liu, Guangxun | Wang, Yuqiu | Wang, Zhong-Liang
We report here the first application of the Spatially Referenced Regressions on Watershed Attributes (SPARROW) model to China, a country naturally and culturally distinct from previous SPARROW applications. The Songhuajiang River Basin (556,700 km²) empties into the Tongjiang monitoring section, a shared water resource of great import for both Chinese and Russian citizens. The model was calibrated to annual loads of total nitrogen (TN) at 102 sites and total phosphorus (TP) at 65 sites. We assessed the rates of delivery and loss of nutrients from diffuse sources and also provided reach-level predictions of the percentage of nutrient loads delivered from upstream subbasins to Tongjiang monitoring section. The results indicated that farmland and pasture land were responsible for about 70 % of nutrient inputs to the Tongjiang monitoring section. Point source inputs were not statistically significant sources of TN or TP. We presented evidence that rice paddies delivered less TN to streams per area than other types of cropland. The locations responsible for the highest TN and TP inputs to the Tongjiang monitoring section tended to be located near the mainstream, though the areas of highest TN delivered yield did not correspond to the areas of highest TP delivered yield. This suggests that different management priorities may be needed in different parts of the Songhuajiang River Basin.
Show more [+] Less [-]Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China Full text
2015
Tian, Chang | Pei, Haiyan | Hu, Wenrong | Hao, Daping | Doblin, Martina A. | Ren, Ying | Wei, Jielin | Feng, Yawei
Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.
Show more [+] Less [-]Ultra-high performance liquid chromatography tandem high-resolution mass spectrometry study of tricyclazole photodegradation products in water Full text
2015
Gosetti, Fabio | Chiuminatto, Ugo | Mazzucco, Eleonora | Mastroianni, Rita | Bolfi, Bianca | Marengo, Emilio
This paper reports the study of the photodegradation reactions that tricyclazole can naturally undergo, under the action of sunlight, in aqueous solutions of standard tricyclazole and of the commercial BEAMᵀᴹ formulation. The analyses are carried out by ultra-high performance liquid chromatography technique coupled with high-resolution tandem mass spectrometry. Analysis of both tricyclazole and BEAMᵀᴹ water solutions undergone to hydrolysis does not evidence new chromatographic peaks with respect to the not treated solutions. On the contrary, analysis of the same samples subjected to sunlight irradiation shows a decreased intensity of tricyclazole signal and the presence of new chromatographic peaks. Two photodegradation products of tricyclazole have been identified, one of which has been also quantified, being the commercial standard available. The pattern is similar for the solutions of the standard fungicide and of the BEAMᵀᴹ formulation. The results obtained from eco-toxicological tests show that toxicity of tricyclazole standard solutions is greater than that of the irradiated ones, whereas toxicity levels of all the BEAMᵀᴹ solutions investigated (non-irradiated, irradiated, and hydrolyzed) are comparable and lower than those shown by tricyclazole standard solutions. Experiments performed in paddy water solution show that there is no difference in the degradation products formed.
Show more [+] Less [-]Effects of chitosan, gallic acid, and algicide on the physiological and biochemical properties of Microcystis flos-aquae Full text
2015
Guo, Peiyong | Liu, Yang | Liu, Cong
The effects of chitosan, gallic acid, and algicide chitosan-gallate on the activities of antioxidant enzymes, malonaldehyde (MDA) content, and photosynthetic activity of Microcystis flos-aquae were investigated to explore the physiological and biochemical mechanisms of algicides. Results demonstrated that chitosan did not significantly affect catalase (CAT) and superoxide dismutase (SOD) activities, MDA content, and photosynthetic activity in this alga. At 30 mg L⁻¹, gallic acid, CAT, and SOD activities and MDA of M. flos-aquae cells showed maximums of 2.872 × 10⁻¹⁰ mg·cell⁻¹ min⁻¹, 0.787 × 10⁻⁸ U·cell⁻¹, and 0.626 × 10⁻⁸ nmol·cell⁻¹, respectively. Photosynthetic organs in algal cells were severely damaged under the stress of high gallic acid concentrations, inducing blockage of photosynthetic electron transport and resulting in the inability to restore normal photosynthetic activity. CAT and SOD activities and MDA content with lower algicide concentration were significantly higher than the control group (p < 0.05) and, in higher algicide groups, significantly lower than the control (p < 0.05). Algicide releasing gallic acid in groups treated with 60, 90, and 130 mg/L algicide was strong enough to cause severe damage to photosynthetic organs in these algal cells. The algicide suppression time was longer than that of directly added gallic acid.
Show more [+] Less [-]