Refine search
Results 2771-2780 of 4,935
Correction to: Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields Full text
2019
Shi, Sibo | Wang, Xudong | Ye, Zhengqian | Chen, Wenbo | Li, Ting | Chen, Junhui | Li, Jianwu
The article Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields.
Show more [+] Less [-]Phthalate exposure and cumulative risk in a Chinese newborn population Full text
2019
Li, Xueyan | Liu, Liangpo | Wang, Heng | Zhang, Xueqin | Xiao, Tonghu | Shen, Heqing
Phthalates have been attracted as a considerable attention in toxicological research as well as public health context due to their ubiquitous occurrence and potential adverse health effects. Newborns are susceptible to the environmental risk factors; however, data are still limited on newborn phthalate exposure and risk assessment worldwide, especially in China. This study was nested in a cross-sectional retrospective study of 1359 pregnant women recruited in Xiamen Maternity and Child Care Hospital, China, during June to July 2012. All urine samples from newborn were collected using disposal diapers during the first two postnatal days, and seven phthalate metabolites were measured by LC-ESI-MS/MS. Phthalate exposure and accumulation risk were evaluated based on the measured newborn urinary internal doses. The detection rate (96.5%) and the median concentration (17.5 ng/mL) of mono-n-butyl phthalate (MBP) were the highest, while monobenzyl phthalate (MBzP) concentration was the lowest with a detection rate (1.50%). By estimating the daily intakes of the parent phthalates, their EDI were 0.04, 0.10, 0.32, 0.00, and 0.12 μg/kg-bw/day for dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalates (DBP), benzyl butyl phthalate (BBzP), and di-(2-ethylhexyl) phthalate (DEHP), respectively. The newborns were commonly exposed to phthalates but no one exceeds the regulated tolerable daily intake (TDI) values in this large newborn population.
Show more [+] Less [-]Assessment of intake of copper and lead by sheep grazing on a shooting range for small arms: a case study Full text
2019
Johnsen, Ida Vaa | Mariussen, Espen | Voie, Øyvind
The Norwegian Armed Forces’ shooting ranges contain contamination by metals such as lead (Pb) and copper (Cu) and are often used as grazing pastures for livestock. To determine whether the sheep were at risk from grazing at a shooting range in Nord-Trøndelag (the Leksdalen shooting field), a study was conducted wherein the aim was to determine the amount of soil the sheep were eating, the accumulation of Cu and Pb in the livers of lambs grazing on the shooting ranges, and the accumulation of Pb and Cu in the grass. The grazing behavior of the sheep was mapped using GPS tracking and wildlife cameras. Soil, grass, feces, and liver samples were collected. All the samples were analyzed for Pb, Cu, and molybdenum (Mo), and soil and feces were also analyzed for titanium (Ti). Mean concentrations in grass, soil, feces, and liver was 41–7189, 1.3–29, 4–5, and 0.3 mg/kg Pb, respectively, and 42–580, 4.2–11.9, 19–23, and 273 mg/kg Cu, respectively. The soil ingestion rate was calculated using Ti in feces and soil. From these results, the theoretical dose of Cu and Pb ingested by grazing sheep was calculated. The soil ingestion rate was found to be 0.1–0.4%, significantly lower than the soil ingestion rate of 5–30% usually used for sheep. Little or no accumulation of Cu and Pb in the grass was found. There was no difference between the metal concentrations in the washed and unwashed grass. According to the calculated dose, the sheep were at little or no risk of acute or chronic Pb and Cu poisoning from grazing on the Leksdalen shooting range. The analysis of liver samples showed that lambs grazing on the shooting range did not have higher levels of Cu or Pb than lambs grazing elsewhere. None of the lambs had concentrations of Cu or Pb in their livers indicating poisoning.
Show more [+] Less [-]Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay–biochar composite using natural attapulgite and cauliflower leaves Full text
2019
Wang, Zhaowei | Yang, Xing | Qin, Tingting | Liang, Guiwei | Li, Yan | Xie, Xiaoyun
A novel magnetic attapulgite–biochar composite (MABC) derived from natural attapulgite, cauliflower leaves, and FeCl₃ was successfully prepared as a low-cost adsorbent for oxytetracycline (OTC) removal from aqueous solution. Characterization experiments by different techniques suggested that attapulgite clay particles and Fe₃O₄ nanoparticles were successfully covered on the MABC surface. Compared with the pristine biochar (CLB) and attapulgite–biochar composite (ABC), MABC had the largest surface area, well-developed pore structure, and more surface oxygen-containing functional groups which could interact with organic pollutant via hydrogen bonding, π–π electron coupling, complexation, and ion exchange. The maximum adsorption capacity of MABC by the Langmuir model was 33.31 mg/g, which was dramatically higher than that of CLB and ABC. The effects of solution initial pH had little difference on the adsorption of OTC because of the buffering effect. Adsorbent-regeneration studies of MABC exhibited good reusability and separation property. All the results indicated that MABC could be used as a potential adsorbent because of its easy preparation and separation, high efficiency, wide pH range application, and abundant and cheap raw materials in the global ecosystem. Graphical abstract
Show more [+] Less [-]Cobalt speciation and phytoavailability in fluvo-aquic soil under treatments of spent mushroom substrate from Pleurotus ostreatus Full text
2019
Liu, Borui | Huang, Qing | Su, Yuefeng | Xue, Qianhui | Sun, Liuye
Cobalt (Co) is a nutrient for soil microorganisms and crops, as well as a worldwide industrial pollutant. When the level of Co exceeds the acceptable limit, this heavy metal can lead to devastating consequences for soil environments. There is considerable attention and concern about elevated levels of Co contaminating soil and crops. Spent mushroom substrate (SMS) is a potential amendment for the adsorption of pollutants, which has potential for resolving Co-polluted soil that spans the world. To investigate the environmental behavior and risks associated with Co in fluvo-aquic soil under specific treatments of SMS from Pleurotus ostreatus, a lab-scale pot experiment was conducted. SMS and exogenous Co were added to soil, which was retained for approximately 30 days. Pakchois (Brassica chinensis L.) were planted in the treated soil for 28 days until harvest. The Co speciation in soil (modified BCR sequential extraction) and Co accumulation in pakchoi tissue were studied. When the SMS concentration was within a range of 0 to 9 g kg⁻¹ (total amount = 0 to 2.7 g), Co in the acid-soluble fraction was transformed to the oxidizable fraction in soil, resulting from the mesh structure on the surface of SMS, as well as the amide and carboxyl in the SMS molecular structure. In this situation, the Co accumulation levels in the pakchois decreased significantly (P < 0.05), indicating the efficacy of SMS for reducing Co phytoavailability. However, when the SMS concentration reached 12 g kg⁻¹, the phytoavailability increased again (P < 0.05). When the SMS concentration ranged from 8.86 to 9.51 g kg⁻¹, the Co phytoavailability in soil reached a minimum, while the biomass of pakchoi reached a maximum. Conclusively, SMS from Pleurotus ostreatus are effective for reducing the Co phytoavailability, as well as for reducing the chance of Co transferring into a human’s body through crops (i.e., food consumption). In order to achieve the optimum efficacy, the SMS concentration in soil should be maintained at a range of 8.86 to 9.51 g kg⁻¹.
Show more [+] Less [-]Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with diesel, biodiesel, and its blends by using nanoadditive Full text
2019
Vellaiyan, Suresh
This article presents the results of investigations carried out to evaluate the improvement in combustion, performance, and emission characteristics of a diesel engine fueled with neat petro-diesel (PD), soybean biodiesel (SB), and 50% SB blended PD (PD50SB) by using carbon nanotube (CNT) as an additive. The acid–alkaline-based transesterification process with sodium hydroxide (NaOH) as a catalyst was applied to derive the methyl ester of SB. A mass fraction of 100 ppm CNT nanoparticle was blended with base fuels by using an ultrasonicator and the physiochemical properties were measured based on EN standards. The measured physiochemical properties are in good agreement with standard limits. The experimental evaluations were carried out under varying brake mean effective pressure (BMEP) conditions in a single-cylinder, four-stroke, and natural aspirated research diesel engine at a constant speed of 1500 rpm. The results reveal that the SB and its blend promote shorter ignition delay period (IDP) that is resulting in lower in-cylinder pressure (ICP) and net heat release rate (NHR) compared to PD. The SB and its blend increase the brake specific fuel consumption (BSFC), and reduce the brake specific energy consumption (BSEC) and exhaust gas temperature (EGT), due to lower heating value, and efficient combustion, respectively. As far as the emission characteristics are concerned, the SB and its blend promote lower magnitude of hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO₂), and smoke emissions compared to PD except for oxides of nitrogen (NOₓ) emission. The CNT nanoparticle inclusion with base fuels significantly improves the combustion, performance, and emissions level irrespective of engine load conditions.
Show more [+] Less [-]Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart? A histopathological, immunohistochemical, and genotoxic study Full text
2019
El-Din, Eman Ahmed Alaa | Mostafa, Heba El-Sayed | Samak, Mai A. | Mohamed, Eman M. | El-Shafei, Dalia Abdallah
The evaluation of the toxicological effects of titanium dioxide nanoparticles (TiO₂NPs) is increasingly important due to their growing occupational and industrial use. Curcumin is a yellow curry spice with a long history of use in herbal medicine and has numerous protective potentials such as antioxidant, antimicrobial, anti-inflammatory, and anti-apoptotic effects. Accordingly, we tested the hypothesis that curcumin could ameliorate TiO₂NP-induced cardiotoxic and genotoxic effects in adult male albino rats. For this purpose, 48 adult male albino rats were randomized into five groups; all treatment was by oral gavage once daily for 90 days: group I (8 rats), untreated control; group II (16 rats), subdivided into vehicle control IIa (8 rats) received saline and vehicle control IIb (8 rats) received corn oil; group III (8 rats) orally gavaged with curcumin dissolved in 0.5 ml corn oil at a dose of 200 mg/kg b.w./day; group IV treated with TiO₂NPs at a dose of 1200 mg/kg b.w./day (1/10 LD₅₀) suspended in 1 ml of 0.9% saline; group V treated with curcumin + TiO₂NPs (the same previously mentioned doses). Curcumin was orally gavaged for 7 days before TiO₂NPs treatment was initiated, and then they received TiO₂NPs along with curcumin at the same doses for 90 days. TiO₂NPs administration resulted in several myocardial cytomorphic changes as structurally disorganized, degenerated, and apoptotic cardiomyocytes and the newly implemented 3-nitrotyrosine immune expression rendered strong evidence that these effects derived from the cardio myocellular oxidative burden. Furthermore, comet assay results confirmed TiO₂NP-related DNA damage. Remarkably, all these changes are partially mitigated in rats treated with both curcumin and TiO₂NPs. Our results suggest that concurrent curcumin treatment has a beneficial role in ameliorating TiO₂NP-induced cardiotoxicity and this may be mediated by its antioxidative property.
Show more [+] Less [-]Characterization of modified Alternanthera philoxeroides by diethylenetriamine and its application in the adsorption of copper(II) ions in aqueous solution Full text
2019
Qu, Wei | He, Deliang | Guo, Yanni | Lu, Bailie | Song, Ren-Jie
By a simple and convenient method of using epichlorohydrin as linkages, a novel Alternanthera philoxeroides (AP) derivative modified with diethylenetriamine (DAP) was synthesized, which can remove copper(II) ions (Cu(II)) in the water environment efficiently. The adsorption capacity of DAP for Cu(II) under various factors was measured using ultraviolet spectrophotometer. The adsorption capacity and removal ratio were 19.33 mg/g and 95.57% at pH 5.5 and 298 K. The kinetic and equilibrium study shows that pseudo-second-order kinetic (R² = 0.9964) and Langmuir isotherm models (R² > 0.982) could properly describe DAP adsorption behaviors, and thermodynamic parameters indicate a spontaneous endothermic process (ΔG = − 3.6636 kJ/mol). The combined results of SEM, XRD, FTIR, and XPS analyses reveal that the dominant contribution for enhancement in Cu(II) adsorption is made by the formation of an amino group. And the adsorption mechanism is mainly the complexation reaction. The adsorption efficiency of DAP remained above 72.06% after 6 cycles of adsorption-desorption, which indicated that DAP has good regenerability and stability. All the results suggest that DAP could serve as promising adsorbents for Cu(II) pollution minimization.
Show more [+] Less [-]Effects of neonicotinoids on the emergence and composition of chironomids in the Prairie Pothole Region Full text
2019
Williams, Nate | Sweetman, Jon
The use of neonicotinoid pesticides is widespread throughout agricultural regions, including the Prairie Pothole Region of North America. The occurrence of these pesticides to the abundant adjacent wetlands can result in impacts on nontarget insects, and cascading effects through wetland ecosystems. In the current study, field-based mesocosms were used to investigate the effects of multiple pulses of the neonicotinoid imidacloprid on the emergence and chironomid community composition, in an effort to simulate episodic rain events to Prairie Pothole Wetlands. Sediments from two local wetlands were placed into the mesocosm tanks and three imidacloprid pulses added, each 1 week apart at nominal concentrations of 0.2, 2.0, and 20 μg/L. Overall, a significant decrease in the emergence of adult chironomids was observed within the 2.0 μg/L and greater concentrations, with the subfamilies Chironominae and Tanypodinae showing a greater sensitivity than the members of the subfamily Orthocladiinae. The chironomid community also had a dose-related response, followed by a recovery of the community composition near the end of the experiment. Our results provide additional evidence that repeated pulses of imidacloprid may have effects on chironomids and other sensitive aquatic insects living within Prairie Pothole Wetlands, resulting in reduced food availability. We stress the need for continued monitoring of US surface waters for neonicotinoid compounds and the continuation of additional experiments looking into the impacts on aquatic communities.
Show more [+] Less [-]Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (Central Spain) Full text
2019
Barquero, José Ignacio | Rojas, Sofía | Esbrí, José María | García-Noguero, Eva M. | Higueras, Pablo
The use of trees for biomonitoring of mercury (Hg) and other atmospheric pollutants is of increasing importance today. Leaves from different species have been the most widely used plant organ for this purpose, but only pine bark, and not leaves, was used to monitor Hg pollution. In Almadén (South Central Spain), the largest cinnabar (HgS) deposits in the world have been mined for over 2000 years to obtain metallic Hg and this activity has caused the widespread dispersion of this toxic element in the local environment. A strip of pine trees, 2750 m in length, adjacent and to the South of the mining town has been studied in order to evaluate pine tree needles as monitors for Hg contamination in this heavily polluted area. The study involved the collection of pine tree leaves from several discrete sites along the strip, as well as samples from other nearby locations, together with soil samples and monitoring of atmospheric Hg in the area during both the day and night. Leaves and soils were analyzed for total Hg concentration by means of atomic absorption spectrometry; the leachable fraction of soil Hg was also analyzed by the CV-AFS technique. The results indicate that soils from the investigated area were not directly affected by mining related pollution, with low total Hg levels (3–280 mg kg⁻¹) found in comparison with the nearby Almadén metallurgical precinct and very low leachable Hg contents (0.27–59.65 mg kg⁻¹) were found. Moreover, pine tree needles have a low uptake capacity, with lower THg levels (0.03–6.68 mg kg⁻¹) when compared to those of olive trees in Almadén. However, pine needles do show significant variability with regard to the distance from the source. Gaseous Hg exhibits a similar pattern, with higher levels close to the source, especially during night time (225 ng m⁻³). A multiple linear regression analysis (MLRA) revealed that gaseous Hg in the nocturnal period is the prime factor that influences the amount of Hg uptake by pine tree needles. This finding makes pine needles a promising candidate to biomonitor gaseous Hg on a local or regional scale worldwide. Almadén pine tree needles have been exposed to a number of different Hg sources, including the primary one, namely the old mine dump, and secondary sources such as polluted roads or illegal urban residual waste. The secondary sources cause some minor discrepancies in the model established by the MRLA. The biomonitoring capacity of pine needles needs to be evaluated in areas far from the source. The process involved in gaseous Hg uptake by pine needles appears more likely to involve sorption in the external part of the needle than uptake through stomas, thus making this process strongly dependent on high atmospheric Hg concentrations.
Show more [+] Less [-]