Refine search
Results 2831-2840 of 4,929
Phosphorus characteristics and microbial community in the sediment-water-algal system during algal growth
2019
Huang, Wei | Cao, Xin | Huang, Deying | Liu, Wenli | Liu, Xing | Zhang, Jibiao
Phosphorus (P) characteristics in eutrophic lakes change during algal growth. Furthermore, algae have a significant relationship with the microbial communities of lake sediments. This study addressed the influence of algal growth and soluble reactive phosphorus (SRP) concentrations on P characteristics within the sediment-water-algal (SWA) system. Results indicated that the SWA system simulating a high algal bloom level (SWA-HAB) had a correspondingly high SRP concentration (258.9 μg L⁻¹), and that algal growth promoted a high SRP concentration in the overlying water. The high SRP concentration in overlying water could support algal growth, resulting in a high chlorophyll a (Chl-a) concentration (285.23 mg L⁻¹). During algal growth, the P release flux was high in sediments from the high-SRP SWA system, with the highest P release flux measured at 0.982 mg m⁻² day⁻¹. Furthermore, microbial community abundance had a significant relationship with Chl-a concentrations in overlying water (p < 0.05) and increases with algae growth.
Show more [+] Less [-]Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
2019
Rusmirović, Jelena D. | Obradović, Nina | Perendija, Jovana | Umićević, Ana | Kapidžić, Ana | Vlahović, Branislav | Pavlović, Vera | Marinković, Aleksandar D. | Pavlović, Vladimir B.
Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g⁻¹ for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g⁻¹ for Cd²⁺, Ni²⁺, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.
Show more [+] Less [-]Applicability of water quality models around the world—a review
2019
Burigato Costa, Cássia Monteiro da Silva | da Silva Marques, Leidiane | Almeida, Aleska Kaufmann | Leite, Izabel Rodrigues | de Almeida, Isabel Kaufmann
Water quality models are important tools used in the management of water resources. The models are usually developed for specific regions, with particular climates and physical characteristics. Thus, applying these models in regions other than those they were designed for can generate large simulation errors. With consideration to these discrepancies, the goal of this study is to identify the models employed in different countries and assist researchers in the selection of the most appropriate models for management purposes. Published studies from the last 21 years (1997–2017) that discuss the application of water quality models were selected from three engineering databases: SpringerLink, Web of Science, and Scopus. Seven models for water quality simulations have been widely applied around the world: AQUATOX, CE-QUAL-W2, EFDC, QUALs, SWAT, SPARROW, and WASP. The countries most frequently applying water quality models are the USA, followed by China, and South Korea. SWAT was the most used model, followed by the QUAL group and CE-QUAL-W2. This study provides the opportunity for researchers, who wish to study countries with fewer cases of applied water quality models, to easily identify the work from that region. Furthermore, this work collated central themes of interest and the most simulated parameters for the seven countries that most frequently employed the water quality models.
Show more [+] Less [-]Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: an overview
2019
Hussein, Maad A. | Mohammed, Ahmed A. | Atiya, Mohammed A.
According a wide range of relevant literature, the emulsion liquid membrane technique (ELM) is considered an efficient method to separate and recover organic and inorganic contaminants that could otherwise be released into the environment. One important limitation of ELM process concerns the stabilization and de-stabilization of emulsion globules. To address this, over the last few years, a new ELM trend known as the Pickering emulsion liquid membrane (PELM) has been developed. PELM involves nanoparticle concepts to achieve a more stable emulsion for wastewater treatment. In this article, ELM and PELM techniques, preparation methods, characteristics, stabilization methods (i.e., mechanical and ultrasound emulsification), and de-stabilization (i.e., swelling, leakage and coalescence) of the emulsion are reviewed and described. In addition, various parameters that could impact ELM stability, extraction, and recovery, such as emulsification speed and time, surfactant, carrier, internal agent, diluent, stirring speed, internal to membrane ratio, type of organic membrane, and treatment ratio, are also presented and discussed.
Show more [+] Less [-]Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis
2019
Lim, Ping Feng | Leong, Kah Hon | Sim, Lan Ching | Abd Aziz, Azrina | Saravanan, Pichiah
In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO₂) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO₂. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
Show more [+] Less [-]Heavy metals in organs of stray dogs and cats from the city of Naples and its surroundings (Southern Italy)
2019
Esposito, Mauro | De Roma, Antonella | Maglio, Pasquale | Sansone, Donato | Picazio, Giuseppe | Bianco, Raffaele | De Martinis, Claudio | Rosato, Guido | Baldi, Loredana | Gallo, Pasquale
The aim of the present study was to assess the concentrations of lead (Pb) and cadmium (Cd) in the liver and kidney from stray dogs (Canis lupus familiaris) and cats (Felis catus) found dead between 2014 and 2017 in the city of Naples and its surrounding areas. These organs from 290 dogs and 88 cats were collected after ordinary necropsy of stray animals. Heavy metal concentrations were determined by using atomic absorption spectrophotometry (AAS). Concentrations of Pb (up to 5.93 mg/kg) and Cd (ranging from 0.005 to 6.13 mg/kg) were detected in both livers and kidneys analyzed. Differences in concentration were found based on age class, gender, and kind of tissue for both elements, with a trend similar to those already reported in the literature for comparable studies from different countries. Cadmium levels in the kidney were significantly higher (p < 0.05) in females than those in males for both species. As regards to Pb, the highest concentrations were detected in the liver (3.45 mg/kg in dog and 5.93 in cat, respectively) followed by the renal tissue, with no significant difference depending on the animal gender. This study can be considered the first one in Italy regarding stray dogs and cats as bio-indicators of environmental contamination due to lead and cadmium, suggesting that pets could be sentinel animals to evaluate human exposure to these heavy metals.
Show more [+] Less [-]Assessment of sediment capping with zirconium-modified bentonite to intercept phosphorus release from sediments
2019
Lin, Jianwei | He, Siqi | Zhan, Yanhui | Zhang, Zhe | Wu, Xiaolong | Yu, Yang | Zhao, Yuying | Wang, Yan
Three different types of zirconium-modified bentonites (ZrMBs) including zirconium-modified original bentonite (ZrMOB), zirconium-modified magnesium-pretreated bentonite (ZrMMgB), and zirconium-modified calcium-pretreated bentonite (ZrMCaB) were synthesized and used as active covering materials to suppress the release of phosphorus (P) from sediments. To assess the covering efficiency of ZrMBs to inhibit P release from sediments, we examined the impact of ZrMB covering layer on P mobilization in sediments at different depths as well as the release of P through the interface between sediment and overlying water (SWI) by use of simulating P release control experiments and diffusive gradients in thin films (DGT) technology. The results showed that the amount of soluble reactive P (SRP) in the overlying water greatly decreased after covering with ZrMBs. Moreover, both pore water SRP and DGT-liable P (DGT-P) in the top sediments decreased after capping with ZrMBs. An obvious stratification of DGT-P was observed along the vertical direction after covering with ZrMBs, and static and active layers were found in the top sediment and in the lower sediment directly below the static layer, respectively. Furthermore, ZrMB covering led to the change of P species from easily released P to relatively or very stable P, making P in the top sediment more stable compared to that without ZrMB covering. Besides, an overwhelming majority of P immobilized by ZrMBs is hard to be re-released into the water column in a common environment. Overall, the above results demonstrate that sediment covering with ZrMBs could effectively prevent the transport of SRP from sediments into the overlying water through the SWI, and the control of P transport into the overlying water by ZrMB covering could be mostly due to the immobilization of pore water SRP, DGT-P, and mobile P in the top sediment by ZrMBs.
Show more [+] Less [-]Spatial identification of environmental health hazards potentially associated with adverse birth outcomes
2019
Svechkina, Alina | Portnov, Boris A.
Reduced birth weight (RBW) and reduced head circumference (RHC) are adverse birth outcomes (ABOs), often linked to environmental exposures. However, spatial identification of specific health hazards, associated with these ABOs, is not always straightforward due to presence of multiple health hazards and sources of air pollution in urban areas. In this study, we test a novel empirical approach to the spatial identification of environmental health hazards potentially associated with the observed RHC and RBW patterns. The proposed approach is implemented as a systematic search, according to which alternative candidate locations are ranked based on the strength of association with the observed birth outcome patterns. For empirical validation, we apply this approach to the Haifa Bay Area (HBA) in Israel, which is characterized by multiple health hazards and numerous sources of air pollution. We identified a spot in the local industrial zone as the main risk source associated with the observed RHC and RBW patterns. Multivariate regressions, controlling for personal, neighborhood, and geographic factors, revealed that the relative risks of RHC and RBW tend to decline, other things being equal, as a function of distance from the identified industrial spot. We recommend the proposed identification approach as a preliminary risk assessment tool for environmental health studies, in which detailed information on specific sources of air pollution and air pollution dispersion patterns is unavailable due to limited reporting or insufficient monitoring.
Show more [+] Less [-]Spatial and temporal variations of sediment metals in the Tuul River, Mongolia
2019
Soyol-Erdene, Tseren-Ochir | Lin, Saulwood | Tuuguu, Enkhdul | Daichaa, Dorj | Huang, Kuo-Ming | Bilguun, Ulziibat | Tseveendorj, Enkh-Amgalan
Mongolia has been a pristine environment without much pollution. Our objective is to study a section of the Tuul River to evaluate the present condition of this pristine environment. Sediment metal (Al, Fe, Mn, Cu, Zn, Pb, Ni, Cd, Hg, and Cr) concentrations and Pb-210 were sampled and analyzed. Results showed that metal concentrations are much higher at areas near the capital city and municipal sewage outlet, with enrichment factor values up to 18 for Cu, and 26 for Cr. Higher copper concentrations were found at sites about ~ 50 km downstream from the source, an indication that pollutions are spreading further down the river. Vertical metal concentration profiles indicated that pollutions could be traced back to the 1960s. Inefficient sewage treatment plants and poorly managed power plant ash ponds were major sources of metals leaking into the Tuul River. Sewage wastewater is carrying metals through Tuul River to the lower river basin. Dusts from ash ponds are airborne and transport to greater area. These findings indicate that new and alternative measures have to be enforced to prevent further pollution entering the Tuul River drainage basin and airborne dust to other broader regions of the Asia and ocean.
Show more [+] Less [-]Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants
2019
Vasconcelos, Loren Cristina | de Souza Santos, Esdras | de Oliveira Bernardes, Carolina | da Silva Ferreira, Marcia Flores | Ferreira, Adésio | Tuler, Amélia Carlos | Carvalho, José Augusto Macedo | Pinheiro, Patrícia Fontes | Praça-Fontes, Milene Miranda
The use of allelopathic compounds is an alternative for weeds control, since they present low toxicity when compared with the synthetic herbicides, that may cause several damages, as the contamination of the environment. Our objective was to determine the chemical composition and allelopathic properties of the essential oils of Psidium cattleianum, P. myrtoides, P. friedrichsthalianum, and P. gaudichaudianum on the germination and root growth of Lactuca sativa and Sorghum bicolor, and to evaluate their action on the cell cycle of root meristematic cells of L. sativa. The main compound found in all the studied species was (E)-caryophyllene (P. cattleianum—23.4 %; P. myrtoides—19.3%; P. friedrichsthalianum—24.6% and P. gaudichaudianum—17.0%). The different essential oils were tested at different concentrations on L. sativa and S. bicolor, reducing germination, germination speed index, and root and shoot growth of lettuce and sorghum seedlings. The cytotoxicity and aneugenic potential of these oils were evidenced by the reduction of the mitotic index and increase of the frequency of chromosomal alterations in L. sativa. The essential oils of the species of Psidium studied have potential to be used in weeds control.
Show more [+] Less [-]