Refine search
Results 291-300 of 5,014
Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China Full text
2019
Pan, Feng | Liu, Huatai | Guo, Zhanrong | Cai, Yu | Fu, Yuyao | Wu, Jinye | Wang, Bo | Gao, Aiguo
Sediment porewater can be an important source of contaminants in the overlying water, but the mechanisms of metal(loid) and phosphorus (P) remobilization remain to be investigated. In this study, high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) samplers were used to determine the porewater dissolved iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr), vanadium (V), selenium (Se), arsenic (As), P and DGT-Labile S in coastal sediments in the Jiulong River Estuary (JRE), China. The results showed that high concentrations of dissolved Mn, Se and P were present in the overlying water, indicating potential water pollution with excessive amounts of Mn, Se and P. The dissolved Mn concentrations in the porewater were higher than the dissolved Fe concentrations, especially at submerged sites, demonstrating that Mn(III/IV) reduction is the dominant diagenetic pathway for organic carbon (OC) degradation, which directly affects Fe cycling by the competitive inhibition of Fe(III) reduction and Fe(II) reoxidation. Dissolved Co, Cr, V, Se, As and P show significant positive correlations with Mn but nearly no correlations with Fe, suggesting that the mobility of these metal(loid)s and P is associated with Mn but not Fe cycling in this region. In addition, the coelevated concentrations of the metal(loid)s, P and Mn at the submerged sites are attributed to the strengthened Mn reduction coupled with OC degradation fueled by hypoxia. The higher positive diffusion fluxes of Mn, Se and P were consistent with the excess Mn, Se and P concentrations in the overlying water, together with the approximately positive fluxes of the other metal(loid)s, indicating that sediment Mn(III/IV) reduction and concomitant metal(loid) and P remobilization might be vital pathways for metal(loid) and P migration to the overlying water.
Show more [+] Less [-]Biomonitoring and health risks assessment of trace elements in various age- and gender-groups exposed to road dust in habitable urban-industrial areas of Hefei, China Full text
2019
Ali, Muhammad Ubaid | Liu, Guijian | Yousaf, Balal | Ullah, Habib | Abbas, Qumber | Munir, Mehr Ahmed Mujtaba | Irshad, Samina
The current study investigates the concentration of eleven trace elements in biomaterials including hair (85) and nails (85) along with seventy five (75) road dust samples collected from a healthy population of habitable urban-industrial areas of Hefei, China. The samples were acid digested and analyzed using ICP-MS for trace elements content. The mean concentration of Elements followed descending order of Zn > Mg > Fe > Cr > Al > Sn > Sr > Ti > Cu > As > Cd and Mg > Zn > Fe > Cr > Al > Sn > Ti > Cu > Sr > As > Cd in hair and nails, respectively. Overall, the concentration of elements was found to be high in female subject as compared to male. The concentration of trace elements in hair and nail exceeded the maximum permissible limits in most cases. The corresponding mean values from dust samples were fairly high as compared to background values of trace elements. Middle age groups (21–30 years and 31–40 years) were observed to be the most vulnerable there-by posing a high health risk, as the concentration of trace elements was significantly high in these groups except for Al, which was detected high in age < 20 in case of both male and female. A significantly high correlation was found between trace elements in biomaterials and those detected in dust samples. In hair samples, a significantly positive correlation was noticed for As with Mg, Zn, Sn and Fe, Sn/Mg and Mg/Ti. In the case of nails, a significant correlation was observed for elements like Al, Mg, Zn, Cr, and Cu. The Cluster and principal component analysis revealed industrial and vehicular emissions as main sources for trace elements exposure in humans.
Show more [+] Less [-]Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water Full text
2019
Li, Bing | Guo, Jianzhong | Lv, Kangle | Fan, Jiajie
A new carboxylate-functionalized hydrochar (CFHC) was successfully prepared by reaction of hydrochar with maleic anhydride under solvent-free conditions and followed by deprotonating carboxyl group of hydrochar with NaHCO₃ solution. CFHC was characterized using X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), zeta potential, Brunauer-Emmett-Teller surface area (BET) and Fourier-transform infrared spectroscopy (FTIR), and its adsorption properties and mechanisms to methylene blue (MB) and Cd(II) were investigated using the batch method. The isotherm adsorption data were accorded with Langmuir model and the maximum uptakes were 1155.57 and 90.99 mg/g for MB and Cd(II) at the temperature of 303 K, respectively. The joint analysis of batch experiments and characterizations of hydrochar confirmed the π-π interaction was accompanied by electrostatic interaction and hydrogen bond for MB adsorption, while the surface complexation and ion exchange were predominant mechanisms for Cd(II) adsorption. Therefore, a highly effective adsorbent CFHC prepared by a simple and environmentally friendly solid-phase synthesis is a promising candidate for wastewater treatment.
Show more [+] Less [-]Impacts of microplastics on growth and health of hermatypic corals are species-specific Full text
2019
Reichert, Jessica | Arnold, Angelina L. | Hoogenboom, Mia O. | Schubert, Patrick | Wilke, Thomas
Coral reefs are increasingly affected by the consequences of global change such as increasing temperatures or pollution. Lately, microplastics (i.e., fragments < 5 mm) have been identified as another potential threat. While previous studies have assessed short-term effects caused by high concentrations of microplastics, nothing is known about the long-term effects of microplastics under realistic concentrations. Therefore, a microcosm study was conducted and corals of the genera Acropora, Pocillopora, Porites, and Heliopora were exposed to microplastics in a concentration of 200 particles L⁻¹, relating to predicted pollution levels. Coral growth and health, as well as symbiont properties were studied over a period of six months. The exposure caused species-specific effects on coral growth and photosynthetic performance. Signs of compromised health were observed for Acropora and Pocillopora, those taxa that frequently interact with the particles. The results indicate elevated energy demands in the affected species, likely due to physical contact of the corals to the microplastics. The study shows that microplastic pollution can have negative impacts on hermatypic corals. These effects might amplify corals' susceptibility to other stressors, further contributing to community shifts in coral reef assemblages.
Show more [+] Less [-]Forecasting China's wastewater discharge using dynamic factors and mixed-frequency data Full text
2019
Ding, Lili | Lv, Zhanlei | Han, Meng | Zhao, Xin | Wang, Wei
Forecasting wastewater discharge is the basis for wastewater treatment and policy formulation. This paper proposes a novel mixed-data sampling regression model, i.e., combination-MIDAS model to forecast quarterly wastewater emissions in China based on dynamic factors at different frequencies. The results show that a significant auto-correlation for wastewater emissions exists and that water consumption per ten thousand gross domestic product is the best predictor of wastewater emissions. The forecast performances of the combination-MIDAS models are robust and better than those of the benchmark models. Therefore, the combination-MIDAS models can better capture the characteristics of wastewater emissions, suggesting that the proposed method is a good method to deal with model misspecification and uncertainty for the control and management of wastewater discharge in China.
Show more [+] Less [-]Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent Full text
2019
Phu Nguyen, Ly Sy | Zhang, Leiming | Lin, Da-Wei | Lin, Neng-Huei | Sheu, Guey-Rong
Atmospheric deposition, either dry or wet, has been identified as an important pathway of mercury (Hg) input to terrestrial and aquatic systems. Although East Asia is the major atmospheric Hg emission source region, very few studies have been conducted to quantify atmospheric Hg deposition in its downwind region. In this study, 8-year (2009–2016) atmospheric Hg dry deposition was reported at the Lulin Atmospheric Background Station (LABS), a high mountain forest site in central Taiwan. Dry deposition of speciated Hg was estimated using a bi-directional air-surface flux exchange model for gaseous elemental mercury (GEM) and dry deposition models for gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM), making use of the monitored speciated atmospheric Hg concentrations. Annual total Hg dry deposition ranged from 51.9 to 84.9 μg m−2 yr−1 with a multi-year average of 66.1 μg m−2 yr−1. Among the three forms of atmospheric Hg, GEM was the main contributor to the total dry deposition, contributing about 77.8% to the total, due to the high density of forest canopy as well as the much higher concentration of GEM than GOM and PBM at LABS. Mercury dry deposition is higher in winter and spring than in summer and fall, partly due to the elevated Hg concentrations associated with air masses from East and Southeast Asia where with high atmospheric Hg emissions. The mean annual dry/wet deposition ratio of 2.8 at LABS indicated that Hg deposition to forest landscape was governed by dry rather than wet deposition.
Show more [+] Less [-]Establishment of a multiplex RT-PCR assay for identification of atmospheric virus contamination in pig farms Full text
2019
Li, Han | Wei, Xiaobing | Zhang, Xiulin | Xu, Hao | Zhao, Xuesong | Zhou, Shaofeng | Huang, Shaobin | Liu, Xingyou
Spread of pathogens in pig farms not only causes transfection of diseases to other pigs or even farmers working in the farms, but also induces pollution to the living atmospheric environment of the residents around the farm. Therefore, it is necessary to establish a rapid and simple monitoring method. In this study, full genome sequences of common viruses were analyzed in pig farms, in combination with the design of primers, optimization of the reaction parameters, so as to establish a multiplex RT-PCR assay for the identification of classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus Type 2 (PCV-2), porcine pseudorabies virus (PRV) and porcine parvovirus virus (PPV), which are common in pig farms. This method has a minimal detectable concentration of 10⁻³ ng/μL, which is highly specific. Furthermore, multiplex RT-PCR was applied to examine air samples from 4 pig farms located in different cities of China. The results were in line with those obtained by single PCR. Therefore, this study can be expected to provide essential technique support for the early warning mechanism as well as disease prevention and control system against the major viruses.
Show more [+] Less [-]Maternal exposure to short-to medium-term outdoor air pollution and obstetric and neonatal outcomes: A systematic review Full text
2019
Melody, Shannon M. | Ford, Jane | Wills, Karen | Venn, Alison | Johnston, Fay H.
Little is known about the impacts of maternal exposure to acute episodes of outdoor air pollution, such as that resulting from wildfires, on obstetric and neonatal outcomes. This systematic review aims to synthesise the existing literature exploring the relationship between maternal exposure to short-to medium-term changes in outdoor air quality and obstetric and neonatal outcomes.A systematic search of peer-reviewed articles using PubMed, Cochrane Library, EMBASE, ScienceDirect, Web of Science, ProQuest, GreenFILE and Scopus was conducted in January 2018 using selected search terms. Quality of included studies were assessed using the Newcastle Ottawa Scale.Eleven studies were included; eight assessed the impact of maternal exposure to air pollution exacerbation events, such as wildfires, oil well fires and volcanic eruptions, and three assessed the impact of improvement events, such as the 2018 Beijing Olympics and closure of industrial activities, on obstetric and neonatal outcomes. Studies were highly heterogenous in methodology. Six studies found a significant association between acute changes in air quality and markers of fetal growth restriction, while two did not. Three studies found an adverse association between acute changes in air quality and markers of gestational maturity, and one did not.Overall, there is some evidence that maternal exposure to acute changes in air quality of short-to medium-term duration increases the risk of fetal growth restriction and preterm birth. The relationship for other adverse obstetric or neonatal outcomes is less clear.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction Full text
2019
Zhang, Yan | Peng, Chi | Guo, Zhaohui | Xiao, Xiyuan | Xiao, Ruiyang
Polycyclic aromatic hydrocarbons (PAHs) in urban soils are a risk to the health of residents. To predict those risks, the distribution and the factors influencing the concentration of PAHs were studied by collecting 1120 records of soil PAHs published during 2006–2017 from 26 cities. The mean concentrations of 16 PAHs (∑PAHs) in soil varied from 123 μg/kg to 5568 μg/kg, with a mean value of 1083 μg/kg, suggesting that a few cities were polluted. The distribution of ∑PAHs in the cities followed two gradients, namely from northern China through eastern China to southern China and from industrial cities through developed cities to cities that are main tourist attractions. The concentrations were significantly correlated to annual temperature, the efficiency of energy use, and to such measures of air quality as PM₁₀ and NO₂ concentrations. A regression equation developed to predict the concentration of ∑PAHs in soil and the corresponding health risks to residents of 35 major Chinese cities of China showed that the risks to adults and children were slight in most cities but those in a few industrial cities were of concern, and field investigations are recommended to assess the risk in greater detail. The method offers a useful tool for predicting such risks in other cities even when data on soils PAHs are not available.
Show more [+] Less [-]Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China Full text
2019
Ao, Junjie | Yuan, Tao | Xia, Hui | Ma, Yuning | Shen, Zhemin | Shi, Rong | Tian, Ying | Zhang, Jun | Ding, Wenjin | Gao, Li | Zhao, Xiaodong | Yu, Xiaodan
Per- and polyfluoroalkyl Substances (PFAS) are ubiquitous in the environmental matrix, and their eco-toxicity on wide life and health risks on humans arising concerns. Due to the information gap, current risk assessments of PFAS ignore the indoor exposure pathway such as indoor dust and the different sources of drinking water. We collected and analyzed 168 indoor dust and 27 drinking water samples (including tap water, filtered water and bottled water). The mean concentrations of six typical PFAS measured in indoor dust and drinking water are in the range of 15.13–491.07 ng g⁻¹ and 0.31–4.14 ng L⁻¹, respectively. For drinking water, PFOA and PFOS were the dominant compounds, while PFHxS was the most abundant in indoor dust. Short-chain PFAS concentrations were higher than long-chain PFAS in both drinking water and indoor dust. Higher concentration of PFAS was observed in tap water and filtered water than bottled water. The total daily intake (TDI) of six PFAS are 20.67–52.97 ng kg⁻¹ d⁻¹ for infants, children, teenagers, and adults. As to children, teenagers, and adults, perfluorooctanoate (PFOA) is the major compound, accounting for 72.9–74.7% of the total daily intake. And PFOA (38.7%) and perfluorooctane sulfonate (PFOS, 42.2%) are the dominant PFAS for infants. The quantitative proportions of exposure sources are firstly revealed in this study, which in the order of foodstuff > indoor dust > drinking water > indoor air. Although the contribution to the PFAS intake of drinking water and indoor dust was not predominant (<9%), the health risks caused by long-term exposure need our attention. The hazard quotient (HQ) values of total PFAS were in the range of 0.154–0.498, which suggesting the relatively lower exposure risk in Chinese population. This study provides important reference to understand PFAS exposure status other than foodstuff.
Show more [+] Less [-]