Refine search
Results 2981-2990 of 4,033
Degradation of typical antibiotics during human feces aerobic composting under different temperatures
2016
Shi, Honglei | Wang, Xiaochang C. | Li, Qian | Jiang, Qishao
Four typical antibiotics were added to human feces for aerobic composting using batch reactors with sawdust as the bulk matrix. Under three composting temperatures (room temperature, 35 ± 2 °C and 55 ± 2 °C), decreases in the extractable concentrations of antibiotics in the compost were monitored for 20 days. As a result, the removals of extractable tetracycline and chlortetracycline were found to be more temperature-dependent than the removals of sulfadiazine and ciprofloxacin. However, more than 90 % of all of the extractable antibiotics were removed at 55 ± 2 °C. Three specific experiments were further conducted to identify the possible actions for antibiotic removal, including self-degradation in aqueous solution, composting with a moist sterile sawdust matrix without adding feces and composting with human feces and moist sterile sawdust. As a result, it was found that the removal of tetracycline and chlortetracycline was mainly due to chemical degradation in water, whereas the removal of sulfadiazine was mainly attributed to adsorption onto sawdust particles. The microbial activity of compost varied with temperature to a certain extent, but the differences were insignificant among different antibiotics. Although microbial action is important for organic matter decomposition, its contribution to antibiotic degradation was small for the investigated antibiotics, except for ciprofloxacin, which was degraded by up to 20 % due to microbial action.
Show more [+] Less [-]Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure
2016
Liao, Xiaobin | Li, Bingxin | Zou, Rusen | Dai, James Y. | Xie, Shuguang | Yuan, Baoling
Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.
Show more [+] Less [-]Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish
2016
Juneidi, Ibrahim | Hayyan, Maan | Mohd Ali, Ozair
An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl₂ exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC₅₀) of the same DESs on C. carpio fish. The inhibition range and LC₅₀ of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC₅₀ of ChCl:MADES is much higher than that of ChCl:MAMᵢₓ. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.
Show more [+] Less [-]Regeneration complexities of Pinus gerardiana in dry temperate forests of Indian Himalaya
2016
Kumar, Raj | Shamet, G. S. | Mehta, Harsh | Alam, N. M. | Kaushal, Rajesh | Chaturvedi, O. P. | Sharma, Navneet | Khaki, B. A. | Gupta, Dineśa
Pinus gerardiana is considered an important species in dry temperate forests of North-Western Indian Himalaya because of its influence on ecological processes and economic dependence of local people in the region. But, large numbers of biotic and abiotic factors have affected P. gerardiana in these forests; hence, there is a crucial need to understand the regeneration dynamics of this tree species. The present investigation was conducted in P. gerardiana forests to understand vegetation pattern and regeneration processes on different sites in the region. Statistical analysis was performed to know variability in growing stock and regeneration on sample plots, while correlation coefficients and regression models were developed to find the relationship between regeneration and site factors. The vegetation study showed dominance of P. gerardiana, which is followed by Cedrus deodara, Pinus wallichiana and Quercus ilex in the region. The growing stock of P. gerardiana showed steep increasing and then steadily declining trend from lower to higher diameter class. The distribution of seedling, sapling, pole and trees was not uniform at different sites and less number of plots in each site were observed to have effective conditions for continuous regeneration, but mostly showed extremely limited regeneration. Regeneration success ranging from 8.44 to 15.93 % was recorded in different sites of the region, which suggests that in different sites regeneration success is influenced by collection of cone for extracting seed, grazing/browsing and physico-chemical properties of soil. Regeneration success showed significant correlation and relationship with most of abiotic and biotic factors. The regeneration success is lower than the requirement of sustainable forest, but varies widely among sites in dry temperate forests of Himalaya. More forest surveys are required to understand the conditions necessary for greater success of P. gerardiana in the region.
Show more [+] Less [-]Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization
2016
Huang, Lei | Fang, Hongwei | He, Guojian | Chen, Minghong
Sediment samples from University Lake (U.L.) and Anacostia River (A.R.) were collected to study the phosphorus (P) adsorption with pH at 3.65, 4.75, and 5.65. The surface micro-morphology and pore structures of sediment particles were obtained using a scanning electron microscopy and gas adsorption method, respectively. Fourier analysis was then applied to approximate the surface morphology, which was incorporated into the Langmuir isotherm to directly derive the model parameters for P adsorption simulation. Meanwhile, an empirical function of pH was introduced to represent the pH effect on P adsorption. A stronger P adsorption was observed for the A.R. sediment due to the more clay minerals, smaller median diameter, and a greater percentage of large pores, and the increasing pH resulted in a decrease of adsorption equilibrium constant as well as the P adsorption capacity, which was well reproduced by the adsorption isotherms. This study would benefit the mechanism study of the interactions between sediment particles and pollutants, providing references for understanding the pollutants’ transport in aqueous systems.
Show more [+] Less [-]Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets
2016
Nam, Go-Un | Bonifacio, Riza Gabriela | Kwon, Jung-Hwan | Hong, Yongseok
Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6–2.8 for PDMS and 2.1–3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water.
Show more [+] Less [-]Using interval maxima regression (IMR) to determine environmental optima controlling Microcystis spp. growth in Lake Taihu
2016
Li, Ming | Peng, Qiang | Xiao, Man
Fortnightly investigations at 12 sampling sites in Meiliang Bay and Gonghu Bay of Lake Taihu (China) were carried out from June to early November 2010. The relationship between abiotic factors and cell density of different Microcystis species was analyzed using the interval maxima regression (IMR) to determine the optimum temperature and nutrient concentrations for growth of different Microcystis species. Our results showed that cell density of all the Microcystis species increased along with the increase of water temperature, but Microcystis aeruginosa adapted to a wide range of temperatures. The optimum total dissolved nitrogen concentrations for M. aeruginosa, Microcystis wesenbergii, Microcystis ichthyoblabe, and unidentified Microcystis were 3.7, 2.0, 2.4, and 1.9 mg L⁻¹, respectively. The optimum total dissolved phosphorus concentrations for different species were M. wesenbergii (0.27 mg L⁻¹) > M. aeruginosa (0.1 mg L⁻¹) > M. ichthyoblabe (0.06 mg L⁻¹) ≈ unidentified Microcystis, and the iron (Fe³⁺) concentrations were M. wesenbergii (0.73 mg L⁻¹) > M. aeruginosa (0.42 mg L⁻¹) > M. ichthyoblabe (0.35 mg L⁻¹) > unidentified Microcystis (0.09 mg L⁻¹). The above results suggest that if phosphorus concentration was reduced to 0.06 mg L⁻¹ or/and iron concentration was reduced to 0.35 mg L⁻¹ in Lake Taihu, the large colonial M. wesenbergii and M. aeruginosa would be replaced by small colonial M. ichthyoblabe and unidentified Microcystis. Thereafter, the intensity and frequency of the occurrence of Microcystis blooms would be reduced by changing Microcystis species composition.
Show more [+] Less [-]Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling
2016
Qiu, Menglong | Wang, Qi | Li, Fangbai | Chen, Junjian | Yang, Guoyi | Liu, Liming
A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios <1) included elevation, distance from the road, distance from the key polluting enterprises, distance from the town center, soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.
Show more [+] Less [-]Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China
2016
Xu, Daoquan | Wang, Yinghui | Zhang, Ruijie | Guo, Jing | Zhang, Wei | Yu, Kefu
The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5–6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.
Show more [+] Less [-]The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth
2016
Higgins, D. | Curtin, T. | Pawlett, M. | Courtney, R.
High alkalinity (pH > 12) of bauxite-residue leachates presents challenges for the long-term storage and managements of the residue. Recent evidence has highlighted the potential for constructed wetlands to effectively buffer the alkalinity, but there is limited evidence on the potential for wetland plants to establish and grow in soils inundated with residue leachate. A pot-based trial was conducted to investigate the potential for Phragmites australis to establish and grow in substrate treated with residue leachate over a pH range of 8.6–11.1. The trial ran for 3 months, after which plant growth and biomass were determined. Concentrations of soluble and exchangeable trace elements in the soil substrate and also in the aboveground and belowground biomass were determined. Residue leachate pH did not affect plant biomass or microbial biomass. With the exception of Na, there was no effect on exchangeable trace elements in the substrate; however, increases in soluble metals (As, Cd and Na) were observed with increasing leachate concentration. Furthermore, increases in Al, As and V were observed in belowground biomass and for Cd and Cr in aboveground biomass. Concentrations within the vegetation biomass were less than critical phytotoxic levels. Results demonstrate the ability for P. australis to grow in bauxite-residue leachate-inundated growth media without adverse effects.
Show more [+] Less [-]