Refine search
Results 31-40 of 7,921
Investigation of Atmospheric Pattern and Simulation of the Frontal Sandstorm Emission over Eastern and Southeastern Iran (case study 23 & 24 April 2019)
2021
Asghari, M. | Meshkatee, A. | Ranjbar Saadat Abadi, A. | Moradi, M.
The present study simulates the frontal dust storm by means of WRF-Chem model and AFWA emission scheme between April 23 and 24, 2019. It then applies reanalysis data (ERA5) to analyze this case from a synoptic perspective. The simulation results show that the model have been accurately characterized first by the onset of dust from the south-east of the country in Kerman Province and then via its transmission to large areas of the east and south-east. The model output also fits well with satellite images. A quantitative comparison of PM10 concentration of the model with actual values shows that the PM10 model estimates are larger than actual values, though it predicts the trend of concentration changes well. Examining the synoptic maps, the isobars’ curve, wind direction change, and temperature advection in the area reveals the presence of atmospheric fronts within a strong dynamic low-pressure system. This causes high temperature and pressure gradients, in turn speeding up the wind within the region. Results from the synoptic analysis show that by passing the frontal system and behind the cold front, a dust mass is formed, which gradually spreads in eastern and the southeastern regions of Iran. In this case, extreme pressure gradient, cold front passage, low-level jet, wind gust on dry areas of dry Hamoon wetland, and cold air advection over flat area of the Lut Desert are important factors in storm formation and emission, east of the country.
Show more [+] Less [-]Bioleaching of electronic waste
2021
Waghmode, M. S. | Gunjal, A. B. | Patil, N. N.
Increase in advanced electronic technology leads to environmental issues related with its disposal. Electronic waste i.e., video card and random access memory were used for studying extraction of precious metals using Paenibacillus sp. Metal contaminated soil was used for the isolation of exopolysaccharide producing strains. The isolate was identified as Paenibacillus sp. based on morphological, biochemical tests and 16S rRNA sequencing. Metal content analysis of soil and e-waste was carried out using X-ray Fluorescence spectroscopy. The vanadium element was more in the soil sample which was 0.487 mg/g and in electronic waste sample copper content was more which was 250 mg/g. Paenibacillus sp. produced capsule which was observed under bright, dark field and phase contrast microscope. Scanning electron microscopy was done for the study of morphological changes of exopolysaccharide producing Paenibacillus sp. in chitin broth and on chitin agar medium with and without e-waste. The Fourier Transform Infrared Spectroscopy analysis of exopolysaccharide produced by Paenibacillus sp. grown on chitin agar and chitin agar with e-waste showed presence of different functional groups. The one step and two step bioleaching experiments were carried out for testing efficacy of biomass on metal leaching. Paenibacillus sp. showed its potential for the extraction of precious metals viz., gold, silver and copper from electronic waste. Paenibacillus sp. recovered gold (0.001%), cadmium (45%), copper (50%), iron (46%), manganese (88%), palladium (56.9%) and zinc (87.12%) by two step fermentation. The study is useful for the bioleaching of precious metals from electronic waste.
Show more [+] Less [-]The role of nanoadsorbents and nanocomposite adsorbents in the removal of heavy metals from wastewater: A review and prospect
2021
Nik Abdul Ghani, N. R. | Jami, M. S. | Alam, M. Z.
Significant attention has been given to nanotechnology as an emerging approach in water/wastewater treatment for heavy metals removal. Numerous research works on synthesizing, fabrication and upgrading nanoparticles have reported as an efficient adsorbent in removal of wide range of heavy metals from wastewater. This review intends to provide researchers with understanding and knowledge regarding the efficient nanoadsorbents, their adsorption mechanism towards selected heavy metals and fundamental principles of nanoadsorbent materials synthesis. In addition, further attention on the modification of nanoadsorbent and development of nanocomposites are highlighted in this paper as value added products to increase the adsorption capacity and enhance the heavy metals removal. Possible challenges and direction on utilization of nanocomposites for heavy metal removal in real wastewater effluent are discussed in view of their removal capability and cost efficiency. Future research works on developing a cost-effective way of nanocomposite production and toxicity testing of nanomaterials in wastewater applications are recommended. Further studies on the efficiency of the nanoadsorbents in pilot or industrial scale are highly needed to test the practicality of the nanoadsorbents for selected heavy metals removal from real wastewater.
Show more [+] Less [-]Determinants of Environmental Degradation in Thailand: Empirical Evidence from ARDL and Wavelet Coherence Approaches
2021
Adebayo, T. S. | Akinsola, G. D. | Odugbesan, J. A. | Olanrewaju, V. O.
This paper explores long-run and causal effects of financial development, real growth, urbanization, gross capital formation and energy consumption on CO2 emissions in Thailand by utilizing recent econometric techniques. The study employs ARDL technique to examine the long and short run interconnection between CO2 emissions and the regressors. Furthermore, we employ the FMOLS, DOLS and CCR as a robustness check to the ARDL long-run estimator. The study use time-series data spanning from 1971 to 2016. The study also utilizes the wavelet coherence technique to collect information on the association and causal interrelationship among these economic variables at different frequencies and timeframes in Thailand. The study objectives are structured to answer the following questions: (a) does the selected macroeconomic indicators impact CO2 emissions in Thailand? (b) if so, why? Findings reveal; (i) Negative and insignificant link between CO2 emissions and urbanization. (ii) GDP growth affects CO2 emissions positively. (iii) The interconnection between CO2 emissions and energy usage is positive. (iv) Gross capital formation impact CO2 emissions positively. (v) Positive interconnection exists between financial development and CO2 emissions in Thailand. Additionally, the wavelet coherence result provides a supportive evidence for the ARDL long run result. Based on these findings, policy directions were suggested.
Show more [+] Less [-]Modeling the Consequences of Benzene Leakage from Tank using ALOHA in Tar Refining Industrial of Kerman, Iran
2021
Shojaee Barjoee, S. | Nikbakht, M. | Malverdi, E. | Zarei Mahmoud Abadi, S. | Naghdi, M. R.
The emission and dispersion of pollutants from the tanks of coking and tar refining industries in the environment is always probable. This study aimed to evaluate the hazard radius of benzene release from the tank of one of the coking and tar refining industries. Areal Location of Hazardouse Atmosphere (ALOHA) model Version 5.4.7 was used to predict the hazard radius of leakage and dispersion of benzene from a tank in different seasons. The maps of the toxic and flammable vapor cloud of benzene, evaporation rate from puddle and the concentration of toxic and flammable vapor cloud inside and outside of the office building were prepared. The results indicated that the maximum average benzene released from the tank was 282 Kg/min and the total amount of benzene leakage was 11997 kg in 60 min in summer. The maximum diameter of the created evaporating puddle was 71 m in autumn. The maximum toxic and flammable concentrations of benzene inside an office building were 772 and 936 ppm, respectively whilethey were 3720 and 3540 ppm outside a building in autumn. Based on the Acute Exposure Guideline Levels (AEGL) and Lower Explosive Limit (LEL) criterias, the maximum hazard radius was 1200 and 200 m in autumn. The toxic vapor cloud of benzene covered some parts of the adjacent coking plant. However, the boundaries of the flammable vapor cloud failed to reach the adjacent industries. The scenario of this study is safe for the adjacent residents and unsafe for the personnel. Thus, presenting a strategy to deal with this process incident is essential.
Show more [+] Less [-]Health Risk Assessment of Heavy Metals in the Soil of Angouran Mineral Processing Complex in Iran
2021
Sheikhi Alman Abad, Z. | Pirkharrati, H. | Mojarrad, M.
This study aims at assessing the health-related risk of As, Co, Cr, Ni, and Cu in the soil around Angouran Mineral Processing Complex (AMPC), due to environmentally sensitive nature of the area, having agricultural activities, habitats of animal and plant species, and industrial activities integrated with each other. Soil samples have been collected from 74 points (0-20 cm) of the area and concentrations of heavy metals have been measured, using ICP-OES. The Geoaccumulation Index (Igeo), Enrichment Factor (EF), and Integrated Pollution Index (IPI) have been used to examine the pollution level. Moreover, hazard indices (HI), hazard quotient (HQ) and cancer risk (CR) have been utilized to assess the non-carcinogenic and carcinogenic health risks of heavy metals. The average concentration of heavy metals indicates that metals’ concentration in the soil have increased in the following order: Cr = Ni> As> Cu> Co. Results from Igeo, Ef, and IPI show that As and Ni are placed in the very high pollution category. The non-carcinogenic risk of dermal absorption (adults = 1.30 E + 00, children = 1.35 E + 00) of Cr and Co polluted particles turn out to be very high. In addition, the risk of cancer as a result of the ingestion of As- and Cr-contaminated soil particles is high in both of age groups, with children being 68% more likely to be at risk of cancer than adults. Therefore, actions such as soil remediation should be done to reduce the risk of exposure and protect the health of the residents, especially the farmers.
Show more [+] Less [-]The Impact of RDF Valorization on the Leachate Quality and on Emissions from Cement Kiln (Case Study of a Region in Morocco)
2021
Ouigmane, Abdellah | Boudouch, Otmane | Hasib, Aziz | Ouhsine, Omar | Abba, El Hassan | Isaifan, Rima J. | Berkani, Mohamed
Energy recovery is a sustainable method of municipal solid waste (MSW) management. The co-incineration of refuse derived fuel (RDF) has shown several economic and environmental advantages. The objective of this research is to assess the impact of RDF recovery on leachate quality using leachate tests and calculation of greenhouse gases (GHG) reduction in the kilns of a cement plant. The qualitative results of the eluate show that there is an impact on leachate quality depending on the type of waste. The values of the chemical oxygen demand (COD), biological oxygen demand (BOD5), electrical conductivity and pH of the leachate from the raw waste after 120 hours of leaching are 29.33 gO2/kg DM, 14.00 g O2/kg DM, 4.27 ms/cm and 7.57. On the other hand, the values of the same quality parameters of the eluate generated by the waste without RDF are 19.33 g O2/kg DM, 20.67 g O2/kg DM, 2.77 ms/cm and 7.13; respectively. The calculation of GHG reduction shows that the substitution of 83,000 tonnes per year of petroleum coke by 15% of RDF (25,493 tonnes per year) can reduces 28,970 tCO2 eq.
Show more [+] Less [-]Effect of Biochar Amended Vermicomposting of Food and Beverage Industry Sludge along with Cow dung and Seed Germination Bioassay
2021
Tasnim, Umme Fariha | Shammi, Mashura | Uddin, Md. Khabir | Akbor., Md. Ahedul
Transformation of food and beverage industrial sludge into vermicompost into value-added product simultaneously can control gaseous emission. Addition of biochar in the vermicomposting as a bulking agent increases fertilizer value. This research aimed to investigate the effect of biochar amendment on vermicomposting of the food and beverage industry sludge (FBIS) and cow dung (CD) in a different ratio using earthworm Eisenia fetida. We had further investigated the survival rate of E. fetida and the cocoon productions after 35 days of the vermicomposting. Besides, we have also evaluated the seed germination bioassay using Malabar spinach (Basella alba) to determine the toxicity and maturity of produced compost. The survival and cocoon production of E. fetida were higher in vermicompost amended with 10% biochar. Vermicomposting with biochar resulted in a slight pH shift. Reduction in organic carbon (OC) percentage not so significant in biochar added FBIS and CD. An increase in phosphorus and potassium content and a decrease in nitrogen percentage observed; vermicomposting with biochar resulted in higher seed germination, root elongation, and germination index than vermicomposting without biochar.
Show more [+] Less [-]Carcinogenic and Non-carcinogenic Health Risk Assessment of Heavy Metals in Ground Drinking Water Wells of Bandar Abbas
2021
Farimani Raad, Hamidreza | Pardakhti, Alireza | Kalarestaghi, Hamidreza
This research evaluates the carcinogenic and non-carcinogenic risks from cadmium, lead, and zinc in Bandar Abbas groundwater sources. The samples from 25 wells were analyzed for cadmium, lead and zinc. Total lifetime cancer risk and non-cancer risk assessment from exposure to these pollutants in drinking water (ingestion, inhalation and skin routes) were conducted for people living in these villages. In these regions most of the drinking water supplied, are from these wells which shows the importance of analyzing the quality of them in order to prevent diseases and cancer risks. The highest risk from cadmium seems to be in village Dehno Paein and also this amount for lead occurs in Tifakan Tal-e Gerdu. The highest hazard index (HI) based on human health risk assessment (HHRA) model for cadmium, lead, and zinc through oral, inhalation and dermal pathways were computed as 0.005, 1.63 and 0.043 which are in Dehno Paein, Tifakan Tal-e Gerdu and Faryab. Results show that lead can lead to more cancer cases in these villages that cadmium. The total expected cancer cases from exposure to cadmium in different routes are lower than lead.
Show more [+] Less [-]Characterization and Applications of Innovative Sn-doped TiO2/AC and PPy-CS/Sn-doped TiO2 Nanocomposites as Adsorbent Materials
2021
Naser, Elham | AL-Mokaram, Ali | Hussein, Fadhela
This work explores the synthesis and characterization of two novel nanocomposites that can be used in various applications, such as aqueous solution adsorption of pollutants. The first nanocomposite consists of tin (Sn)-doped titanium dioxide (TiO2) on activated carbon, while the other one consists of polypyrole (PPy), chitosan (CS), and Sn-doped TiO2. A contrast was made of their effective adsorbent materials for the removal of Cibacron Brilliant Yellow dye from aqueous solutions. Different analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX), and Fourier transform - infrared (FT-IR) were used to analysis the nanocomposite samples. SEM images show that the average particle diameter of PPy-CS/Sn-doped TiO2 NC is 75 ± 3 nm, while Sn-doped TiO2/AC particles have an average diameter of 40 ± 2 nm. The greater PPy-CS/Sn-doped TiO2 nanocoposite particle diameter indicates that the polymers cover the Sn-doped TiO2 nanoparticles, which leads to higher in the diameter of the particles. The adsorption efficiency of Sn-doped TiO2/AC was higher than that of PPy-CS/Sn-doped TiO2 sample due to its smaller particle size which resulted in a higher surface area which provides more adsorption sites. However, both samples showed remarkable adsorption capacity, where the adsorption capacity of Sn-doped TiO2/AC and PPy-CS/Sn-doped TiO2 were 104 and 103 mg/g, respectively.
Show more [+] Less [-]