Refine search
Results 301-310 of 4,307
Oyster-based national mapping of trace metals pollution in the Chinese coastal waters Full text
2017
Lu, Guang-Yuan | Ke, Cai-Huan | Zhu, Aijia | Wang, Wen-Xiong
To investigate the distribution and variability of trace metal pollution in the Chinese coastal waters, over 1000 adult oyster individuals were collected from 31 sites along the entire coastline, spanning from temperate to tropical regions (Bohai Sea, Yellow Sea, East China Sea and South China Sea), between August and September 2015. Concentrations of macroelements [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] and trace elements [cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), chromium (Cr), silver (Ag), and titanium (Ti)] in these oysters were concurrently measured and analyzed. The results showed high Ti, Zn and Cu bioaccumulation in oysters from Guangdong (South China Sea) and Zhejiang (East China Sea). Oysters at Nanji Island (Wenzhou) and Daya Bay (Huizhou) accumulated significantly high concentrations of Ni and Cr. The elements in these oysters were several times higher than the national food safety limits of China. On the other hand, the present study found that normalization of metals by salinity (Na) and nutrient (P) could reflect more details of metal pollution in the oysters. Biomonitoring of metal pollution could benefit from incorporating the macroelement calibration instead of focusing only on the total metal concentrations. Overall, simultaneous measurement of macroelements and trace metals coupled with non-linear analysis provide a new perspective for revealing the underlying mechanism of trace metal bioavailability and bioaccumulation in marine organisms.
Show more [+] Less [-]Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos Full text
2017
Oliveira, Jacinta M.M. | Galhano, Victor | Henriques, Isabel | Soares, Amadeu M.V.M. | Loureiro, Susana
Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos Full text
2017
Oliveira, Jacinta M.M. | Galhano, Victor | Henriques, Isabel | Soares, Amadeu M.V.M. | Loureiro, Susana
This study aimed to assess the effects of Basagran® on zebrafish (Danio rerio) embryos. The embryos were exposed to Basagran® at concentrations ranging from 120.0 to 480.6 mg/L, and the effects on embryo development (up to 96 h) and bacterial communities of 96 h-larvae were assessed. The embryo development response was time-dependent and concentration-dependent (106.35 < EC50 < 421.58 mg/L). The sensitivity of embryo-related endpoints decreased as follows: blood clotting in the head and/or around the yolk sac > delay or anomaly in yolk sac absorption > change in swimming equilibrium > development of pericardial and/or yolk sac oedema > scoliosis. A PCR-DGGE analysis was used to evaluate changes in the structure, richness, evenness and diversity of bacterial communities after herbicide exposure. A herbicide-induced structural adjustment of bacterial community was observed.In this study, it was successfully demonstrated that Basagran® affected zebrafish embryos and associated bacterial communities, showing time-dependent and concentration-dependent embryos' developmental response and structural changes in bacterial community. Thus, this work provides for the first time a complementary approach, which is useful to derive robust toxicity thresholds considering the embryo-microbiota system as a whole. The aquatic hazard assessment will be strengthened by combining current ecotoxicological tests with molecular microbiology tools.
Show more [+] Less [-]Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos Full text
2017
Oliveira, Jacinta M. M. | Galhano, Victor | Henriques, Isabel | Soares, Amadeu M. V. M. | Loureiro, Susana
This study aimed to assess the effects of Basagran® on zebrafish (Danio rerio) embryos. The embryos were exposed to Basagran® at concentrations ranging from 120.0 to 480.6 mg/L, and the effects on embryo development (up to 96 h) and bacterial communities of 96 h-larvae were assessed. The embryo development response was time-dependent and concentration-dependent (106.35 < EC50 < 421.58 mg/L). The sensitivity of embryo-related endpoints decreased as follows: blood clotting in the head and/or around the yolk sac > delay or anomaly in yolk sac absorption > change in swimming equilibrium > development of pericardial and/or yolk sac oedema > scoliosis. A PCR-DGGE analysis was used to evaluate changes in the structure, richness, evenness and diversity of bacterial communities after herbicide exposure. A herbicide-induced structural adjustment of bacterial community was observed. In this study, it was successfully demonstrated that Basagran® affected zebrafish embryos and associated bacterial communities, showing time-dependent and concentration-dependent embryos' developmental response and structural changes in bacterial community. Thus, this work provides for the first time a complementary approach, which is useful to derive robust toxicity thresholds considering the embryo-microbiota system as a whole. The aquatic hazard assessment will be strengthened by combining current ecotoxicological tests with molecular microbiology tools. | published
Show more [+] Less [-]Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida Full text
2017
Bednarska, Agnieszka J. | Choczyński, Maciej | Laskowski, Ryszard | Walczak, Marcin
In polluted environments organisms are commonly exposed to a combination of chemicals with different modes of action, and their effects can be additionally modified by natural abiotic conditions. One possible mechanism for interactions in mixtures is via toxicokinetics, as chemicals may alter the uptake, distribution, biotransformation and/or elimination of each other, and all these processes can be affected by temperature. In this study, the effect of temperature (T) on the toxicokinetics of copper (Cu) and chlorpyriphos (CHP), applied either singly or in binary mixtures, was studied in the earthworm Eisenia fetida. The experiments were conducted at 10 or 20 °C and the earthworms were exposed to environmentally realistic concentrations of Cu and/or CHP for 16 d, followed by a depuration period of 4 d in uncontaminated soil. The earthworms were sampled for body Cu and/or CHP concentrations and acetylcholinesterase (AChE) activity measurements. The CHP degradation rate in the soil was substantially higher at 20 °C and in soil treated with Cu. The significant (p < 0.05) inhibition of AChE activity in the earthworms exposed to CHP was found. The effect of Cu was significant only at p < 0.1. No synergistic effect of the parallel CHP and Cu exposure was found. Four days after transferring the earthworms to uncontaminated soil, the AChE activity recovered to the level observed in control animals. The temperature effect on the toxicokinetic parameters was more pronounced for CHP than for Cu. In the case of CHP, the assimilation rate constant (kA) was significantly higher at 20 °C than at 10 °C, both in CHP-only and CHP + Cu treatments. A similar trend was found for the elimination rate constant (kE), but the difference was statistically significant only for non-Cu treatments. In the case of Cu, the general trend of higher kA and kE at 20 °C and in the absence of CHP was observed.
Show more [+] Less [-]Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system Full text
2017
Marsik, P. | Sisa, M. | Lacina, O. | Motkova, K. | Langhansova, L. | Rezek, J. | Vanek, T.
The uptake and metabolism of ibuprofen (IBU) by plants at the cellular level was investigated using a suspension culture of A. thaliana. Almost all IBU added to the medium (200 μM) was metabolized or bound to insoluble structures in 5 days. More than 300 metabolites were determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis, and most of these are first reported for plants here. Although hydroxylated derivatives formed by oxidation on the isobutyl side chain were the main first-step products of IBU degradation, conjugates of these products with sugar, methyl and amino acid groups were the dominant metabolites in the culture. The main portion of total added IBU (81%) was accumulated in the extractable intracellular pool, whereas the cultivation medium fraction contained only 19%. The amount of the insoluble cell-wall-bound IBU was negligible (0.005% of total IBU).
Show more [+] Less [-]Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata Full text
2017
Liu, Xue | Fu, Jing–Wei | Tang, Ni | da Silva, E.B. | Cao, Yue | Turner, Benjamin L. | Chen, Yanshan | Ma, Lena Q.
Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata was examined on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg−1 in As50+phytate50, 2.2- and 3.1-fold that of As50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P + As) but increased by 73% comparing phytate500 to phytate500+As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46–56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability.
Show more [+] Less [-]Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings Full text
2017
Guerrero-Meseguer, Laura | Marín, Arnaldo | Sanz-Lázaro, Carlos
Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings Full text
2017
Guerrero-Meseguer, Laura | Marín, Arnaldo | Sanz-Lázaro, Carlos
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings.
Show more [+] Less [-]Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings Full text
2017
Guerrero-Meseguer, Laura | Marín, Arnaldo | Sanz-Lázaro, Carlos | Universidad de Alicante. Departamento de Ciencias del Mar y Biología Aplicada | Biología Marina
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. | This workwas carried out within the research project NEREIDAS (project code: 2012-ES-92177- S), funded by the European Commission under the Trans-European Transport Network Programme (TEN-T).
Show more [+] Less [-]Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China Full text
2017
Zhang, Chunlin | Geng, Xuesong | Wang, Hao | Zhou, Lei | Wang, Boguang
Atmospheric ammonia (NH3), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH3 m−3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH3m−3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required.
Show more [+] Less [-]Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes Full text
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave
Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes Full text
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave
The increased use of pesticides has caused concern over the possible direct association of exposure to combinations of these compounds with bee health problems. There is growing proof that bees are regularly exposed to mixtures of agrochemicals, but most research has been focused on managed bees living in farmland, whereas little is known about exposure of wild bees, both in farmland and urban habitats. To determine exposure of wild bumblebees to pesticides in agricultural and urban environments through the season, specimens of five different species were collected from farms and ornamental urban gardens in three sampling periods. Five neonicotinoid insecticides, thirteen fungicides and a pesticide synergist were analysed in each of the specimens collected. In total, 61% of the 150 individuals tested had detectable levels of at least one of the compounds, with boscalid being the most frequently detected (35%), followed by tebuconazole (27%), spiroxamine (19%), carbendazim (11%), epoxiconazole (8%), imidacloprid (7%), metconazole (7%) and thiamethoxam (6%). Quantifiable concentrations ranged from 0.17 to 54.4 ng/g (bee body weight) for individual pesticides. From all the bees where pesticides were detected, the majority (71%) had more than one compound, with a maximum of seven pesticides detected in one specimen. Concentrations and detection frequencies were higher in bees collected from farmland compared to urban sites, and pesticide concentrations decreased through the season. Overall, our results show that wild bumblebees are exposed to multiple pesticides when foraging in agricultural and urban landscapes. Such mixtures are detected in bee tissues not just during the crop flowering period, but also later in the season. Therefore, contact with these combinations of active compounds might be more prolonged in time and widespread in the environment than previously assumed. These findings may help to direct future research and pesticide regulation strategies to promote the conservation of wild bee populations.
Show more [+] Less [-]Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes Full text
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave | Department for Environment, Food & Rural Affairs (UK) | Sheepdrove Trust
The increased use of pesticides has caused concern over the possible direct association of exposure to combinations of these compounds with bee health problems. There is growing proof that bees are regularly exposed to mixtures of agrochemicals, but most research has been focused on managed bees living in farmland, whereas little is known about exposure of wild bees, both in farmland and urban habitats. To determine exposure of wild bumblebees to pesticides in agricultural and urban environments through the season, specimens of five different species were collected from farms and ornamental urban gardens in three sampling periods. Five neonicotinoid insecticides, thirteen fungicides and a pesticide synergist were analysed in each of the specimens collected. In total, 61% of the 150 individuals tested had detectable levels of at least one of the compounds, with boscalid being the most frequently detected (35%), followed by tebuconazole (27%), spiroxamine (19%), carbendazim (11%), epoxiconazole (8%), imidacloprid (7%), metconazole (7%) and thiamethoxam (6%). Quantifiable concentrations ranged from 0.17 to 54.4 ng/g (bee body weight) for individual pesticides. From all the bees where pesticides were detected, the majority (71%) had more than one compound, with a maximum of seven pesticides detected in one specimen. Concentrations and detection frequencies were higher in bees collected from farmland compared to urban sites, and pesticide concentrations decreased through the season. Overall, our results show that wild bumblebees are exposed to multiple pesticides when foraging in agricultural and urban landscapes. Such mixtures are detected in bee tissues not just during the crop flowering period, but also later in the season. Therefore, contact with these combinations of active compounds might be more prolonged in time and widespread in the environment than previously assumed. These findings may help to direct future research and pesticide regulation strategies to promote the conservation of wild bee populations. | We are grateful to Defra (Research Project PS2372) for funding this work and to the five farmers for allowing us to work on their property. We are also grateful to the Sheepdrove Trust for contributing to the costs of the analytical work.
Show more [+] Less [-]Passive air sampling of polybrominated diphenyl ethers in New Delhi, Kolkata, Mumbai and Chennai: Levels, homologous profiling and source apportionment Full text
2017
Chakraborty, Paromita | Zhang, Gan | Cheng, Hairong | Balasubramanian, Prithiviraj | Li, Jun | Jones, K. C. (Kevin C.)
Several studies in the recent past reported new sources for industrial persistent organic pollutants (POPs) from metropolitan cities of India. To fill the data gap for atmospheric polybrominated diphenyl ethers (PBDEs), polyurethane foam disk passive air sampling (PUF-PAS) was conducted along urban-suburban-rural transects in four quadrilateral cities viz., New Delhi, Kolkata, Mumbai and Chennai from northern, eastern, western and southern India respectively. Average concentration of Σ8PBDEs in pg/m³ for New Delhi, Kolkata, Mumbai and Chennai were 198, 135, 264 and 144 respectively. We observed a distinct urban > suburban > rural trend for atmospheric PBDEs in Mumbai. Principal component analysis (PCA) attributed three different source types. BDE-47, -99, −100, −153 and −154 loaded in the first component were relatively high in the sites where industrial and informal electronic waste (e-waste) recycling activities were prevalent. Penta congener, BDE-99 and tetra congener, BDE-47 contributed 50%–75% of total PBDEs. Ratio of BDE-47 and -99 in Indian cities reflected the usage of penta formulations like Bromkal −70DE and DE-71 in the commercial and electrical products. PC-2 was loaded with BDE-28 and -35. Percentage of BDE-28 and BDE-35 (>10%) were comparatively much higher than commercial penta products. Abundance of BDE-28 in majority sites can be primarily due to re-emission from surface soil. PC-3 was loaded with BDE-183 and elevated levels were observed mostly in the industrial corridor of Indian cities. BDE-183 was notably high in the urban industrial sites of New Delhi. We suspect this octa-BDE congener resulted from recycling process of plastic products containing octa-BDE formulation used as flame retardants.
Show more [+] Less [-]Membrane partitioning of ionic liquid cations, anions and ion pairs – Estimating the bioconcentration potential of organic ions Full text
2017
Dołżonek, Joanna | Cho, Chul- Woong | Stepnowski, Piotr | Markiewicz, Marta | Thöming, Jorg | Stolte, Stefan
Recent efforts have been directed towards better understanding the persistency and toxicity of ionic liquids (ILs) in the context of the “benign-by-design” approach, but the assessment of their bioaccumulation potential remains neglected. This paper reports the experimental membrane partitioning of IL cations (imidazolium, pyridinium, pyrrolidinium, phosphonium), anions ([C(CN)3]-, [B(CN)4]-, [FSO2)2N]-, [(C2F5)3PF3]-, [(CF3SO2)2N]-) and their combinations as a measure for estimating the bioconcentration factor (BCF). Both cations and anions can have a strong affinity for phosphatidylcholine bilayers, which is mainly driven by the hydrophobicity of the ions. This affinity is often reflected in the ecotoxicological impact. Our data revealed that the bioconcentration potential of IL cations and anions is much higher than expected from octanol-water-partitioning based estimations that have recently been presented. For some ILs, the membrane-water partition coefficient reached levels corresponding to BCFs that might become relevant in terms of the “B” (bioaccumulation potential) classification under REACH. However, this preliminary estimation need to be confirmed by in vivo bioconcentration studies.
Show more [+] Less [-]