Refine search
Results 301-310 of 4,241
Linking changes in antibiotic effluent concentrations to flow, removal and consumption in four different UK sewage treatment plants over four years
2017
Johnson, Andrew C. | Jürgens, Monika D. | Nakada, Norihide | Hanamoto, Seiya | Singer, Andrew C. | Tanaka, Hiroaki
The arrival and discharge of seven antibiotics were monitored at two trickling filter sewage treatment plants of 6000 and 11,000 population equivalents (PE) and two activated sludge plants of 33,000 and 162,000 PE in Southern England. The investigation consisted of 24 h composite samples taken on two separate days every summer from 2012 to 2015 and in the winter of 2015 (January) from influent and effluent. The average influent concentrations generally matched predictions based on England-wide prescription data for trimethoprim, sulfamethoxazole, azithromycin, oxytetracycline and levofloxacin (within 3-fold), but were 3–10 times less for clarithromycin, whilst tetracycline influent concentrations were 5–17 times greater than expected. Over the four years, effluent concentrations at a single sewage plant varied by up to 16-fold for clarithromycin, 10-fold for levofloxacin and sulfamethoxazole, 7-fold for oxytetracycline, 6-fold for tetracycline, 4-fold for azithromycin and 3-fold for trimethoprim. The study attempted to identify the principal reasons for this variation in effluent concentration. By measuring carbamazepine and using it as a conservative indicator of transport through the treatment process, it was found that flow and hence concentration could alter by up to 5-fold. Measuring influent and effluent concentrations allowed assessments to be made of removal efficiency. In the two activated sludge plants, antibiotic removal rates were similar for the tested antibiotics but could vary by several-fold at the trickling filter plants. However, for clarithromycin and levofloxacin the variations in effluent concentration were above that which could be explained by either flow and/or removal alone so here year on year changes in consumption are likely to have played a role.
Show more [+] Less [-]Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides
2017
Park, Jihae | Brown, M. T. | Depuydt, Stephen | Kim, Jang K. | Won, Dam-Soo | Han, Taejun
An ecological impact assessment of four herbicides (atrazine, diuron, paraquat and simazine) was assessed using the aquatic floating vascular plants, Lemna gibba, Lemna minor and Lemna paucicostata as test organisms. The sensitivity of several ecologically relevant parameters (increase in frond area, root length after regrowth, maximum and effective quantum yield of PSII and maximum electron transport rate (ETRmax), were compared after a 72 h exposure to herbicides. The present test methods require relatively small sample volume (3 mL), shorter exposure times (72 h), simple and quick analytical procedures as compared with standard Lemna assays. Sensitivity ranking of endpoints, based on EC50 values, differed depending on the herbicide. The most toxic herbicides were diuron and paraquat and the most sensitive endpoints were root length (6.0–12.3 μg L−1) and ETRmax (4.7–10.3 μg L−1) for paraquat and effective quantum yield (6.8–10.4 μg L−1) for diuron. Growth and chlorophyll a fluorescence parameters in all three Lemna species were sensitive enough to detect toxic levels of diuron and paraquat in water samples in excess of allowable concentrations set by international standards. CV values of all EC50s obtained from the Lemna tests were in the range of 2.8–24.33%, indicating a high level of repeatability comparable to the desirable level of <30% for adoption of toxicity test methods as international standards. Our new Lemna methods may provide useful information for the assessment of toxicity risk of residual herbicides in aquatic ecosystems.
Show more [+] Less [-]Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel
2017
Esfandbod, Maryam | Merritt, Christopher R. | Rashti, Mehran Rezaei | Singh, Balwant | Boyd, Sue E. | Srivastava, Prashant | Brown, Christopher L. | Butler, Orpheus M. | Kookana, Rai S. | Chen, Chengrong
Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu2+) and nickel (Ni2+) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu2+ (∼11 times) and Ni2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99–1.34) than in the fire-generated chars (0.98–1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu2+ and Ni2+ in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu2+ and Ni2+ in contaminated lands.
Show more [+] Less [-]Long-term trends (1990–2014), health risks, and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the U.S
2017
Liu, Bian | Xue, Zhuqing | Zhu, Xianlei | Jia, Chunrong
Polycyclic aromatic hydrocarbons (PAHs) are a category of over 100 various chemicals released from numerous combustion sources. The ubiquity and toxicity of PAHs have posed high health risks on human populations. This study aims to examine the long-term trends of atmospheric PAHs at the national-level in the U.S., and evaluate their cancer risks. Daily concentrations of PAHs measured at 169 monitoring stations between 1990 and 2014 were obtained from the U.S. Environmental Protection Agency's Air Quality System. Temporal trends were examined using generalized linear model with generalized estimating equations. Random-effects analysis of variance was performed to explore variance between regions, sites, years, and months with a hierarchical structure. Source categories were identified using diagnostic ratios. National population level cancer risks were estimated using the relative potency factors and inhalation unit risk method. Ambient PAH concentrations displayed an overall downward trend (6–9% annual reduction) in urban areas, but not in rural areas. Seasonal and weekday/weekend effects were significant. Urban concentrations were twice of the rural level. The between-site variation outweighed the temporal variation, indicating large spatial heterogeneity. The predominant PAH sources were from traffic and non-traffic related fuel combustions with a dominant contribution from diesel emissions. The average excess lifetime cancer risk was estimated to be 9.3 ± 30.1 × 10−6 (GM: 4.2 × 10−6) from exposure to ten carcinogenic PAHs. This is the first comprehensive study of the spatiotemporal trends of ambient PAHs at the U.S. national level. The results indicate that future efforts aimed to reduce PAH exposures should focus on diesel emission controls and extending the geographic coverage of air monitoring.
Show more [+] Less [-]Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays
2017
Zhang, Yang | Wu, Jigang | Xu, Wenping | Gao, Jufang | Cao, Haijing | Yang, Mingjun | Wang, Bo | Hao, Youwu | Tao, Liming
Avermectin (AVM) has been widely used in agriculture and animal husbandry based on its broad spectrum of effective anthelmintic activity and specificity targets. However, AVM induction of cytotoxicity in human liver is largely unknown. In this study, we investigate the cytotoxic effects of AVM on HepG2 cells in vitro. The results revealed that AVM inhibited the viability of HepG2 cells and enhanced apoptosis. Established assays of cytotoxicity were performed to characterize the mechanism of AVM toxicity on HepG2 cells. Typical apoptosis morphological changes were shown in AVM-treatment cells including chromatin condensation and DNA fragmentation. We demonstrated that AVM-induced apoptosis of HepG2 cells were mediated by generated ROS. Moreover, a decrease in mitochondrial membrane potential (MMP) and up-regulating the Bax/Bcl-2 ratio, resulted in a release of cytochrome-c as well as activation of caspase-9/-3. In conclusion, our experimental results show that AVM has a potential threat to human health which may be induce apoptosis of human hepatocyte cells via caspase-dependent mitochondrial pathways.
Show more [+] Less [-]Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries
2017
Henríquez-Hernández, Luis Alberto | Luzardo, Octavio P. | Boada, Luis D. | Carranza, Cristina | Pérez Arellano, José Luis | González-Antuña, Ana | Almeida-González, Maira | Barry-Rodríguez, Carlos | Zumbado, Manuel | Camacho, Maria
Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V —all of them frequently found in e-waste—, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of contamination of the population of the continent.
Show more [+] Less [-]Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco)
2017
Moyé, Julien | Picard-Lesteven, Tanguy | Zouhri, Lahcen | El Amari, Khalid | Hibti, Mohamed | Benkaddour, Abdelfattah
Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities.
Show more [+] Less [-]Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms
2017
Yadav, Ravi | Sahu, L.K. | Beig, G. | Tripathi, Nidhi | Jaaffrey, S.N.A.
Continuous measurements of PM2.5, PM10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM2.5, PM10 and CO were 42 ± 17 μg m−3, 114 ± 31 μg m−3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM10/PM2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM2.5, PM10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM2.5, CO and PM10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM2.5/PM10 ratio coincided with the highest concentrations of pollutants (CO and NOX) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM10 were observed during strong dust storms. Relatively low levels of O3 and NOx during the storm periods indicate the role of heterogeneous removal.
Show more [+] Less [-]Potential rainfall-intensity and pH-driven shifts in the apparent fluorescent composition of dissolved organic matter in rainwater
2017
Zhou, Yongqiang | Yao, Xiaolong | Zhang, Yibo | Shi, Kun | Zhang, Yunlin | Jeppesen, Erik | Gao, Guang | Zhu, Guangwei | Qin, Boqiang
Perturbations of rainwater chromophoric dissolved organic matter (CDOM) fluorescence induced by changes in rainfall intensity and pH were investigated by field observations and laboratory pH titrations. Microbial humic-like fluorophores dominated the rainwater CDOM pool, followed by tryptophan-like and tyrosine-like substances. Increased rainfall intensity had notable dilution effects on all six fluorescent components (C1-C6) identified using parallel factor (PARAFAC) analysis, the effect being especially pronounced for the microbial humic-like C1, tryptophan-like C3, and tyrosine-like C5. The results also indicated that increasing pH from 7 to 9 led to decreased fluorescence intensity (Fmax) of all the six components, while a pH increase from 5 to 7, resulted in increasing Fmax of terrestrial humic-like C2, tyrosine-like C5, and tryptophan-like C6 and decreasing microbial humic-like C1, tryptophan-like C3, and fulvic-like C4. Two-dimensional correlation spectroscopy (2D-COS) demonstrated that synchronous fluorescence responded first to pH modifications at fulvic-like wavelength (λEx/λEm = ∼316/416 nm), followed by tyrosine-like wavelength (λEx/λEm = ∼204/304 nm), tryptophan-like wavelength (λEx/λEm = ∼226/326 nm), microbial humic-like wavelength (∼295/395 nm), and finally terrestrial humic-like wavelength (∼360/460 nm). Our results suggest that a decrease in areas affected by acid rain in South China occurring at present may possibly result in apparent compositional changes of CDOM fluorescence. The decreased rainfall in South-West China and increased rainfall in North-West China during the past five decades may possibly accordingly result in increased and decreased Fmax of all the six components identified in South-West and North-West China, respectively.
Show more [+] Less [-]Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution
2017
Davis, Robert P. | Sullivan, Mažeika | Stefanik, Kay C.
Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length – a key measure of trophic structure – was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals.
Show more [+] Less [-]