Refine search
Results 311-320 of 4,302
The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment
2017
Zhang, Jin | Wu, Junwei | Hua, Pei | Zhao, Zhonghua | Wu, Lei | Fan, Gongduan | Bai, Yun | Kaeseberg, Thomas | Krebs, Peter
The pollution load of urban runoff is boosted due to the washing away of road-deposited sediment (RDS). Therefore, a source-oriented mitigation strategy is essential to integrated stormwater management. This study showcases the influence of land use dependent source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in RDS. Samples were collected from areas of different land uses, including commercial city centre, highway, residential rural and campus areas. According to the positive matrix factorisation (PMF) receptor model, different primary sources were identified at different land use areas. Generally, potential sources of gasoline- and diesel-powered engine emissions and other pyrogenic sources of biomass, coal, and wood combustions were identified as main sources of PAH content in RDS. The source specific risks posed by PAHs at different land uses were further estimated by the incremental lifetime cancer risk (ILCR). This shows that the mean ILCRs of the total cancer risk for children and adults at the given land uses were lower than the baseline value of an acceptable risk. However, the potential exposure risk to RDS adsorbed PAHs for children was considerably higher than that for adults. Vehicular emissions and wood combustion were the major contributors to the cancer risk with average contributions of 57 and 29%, respectively.
Show more [+] Less [-]Influence of bacterial extracellular polymeric substances on the sorption of Zn on γ-alumina: A combination of FTIR and EXAFS studies
2017
Li, Cheng-Cheng | Wang, Yurun | Du, Huan | Cai, Peng | Peijnenburg, Willie J.G.M. | Zhou, Dong-Mei
Extracellular polymeric substances (EPS) isolated from bacteria, are abound of functional groups which can react with metals and consequently influence the immobilization of metals. In this study, we combined with Zn K-edge Extended X-ray Absorption Fine Structure (EXAFS), Fourier Transform Infrared (FTIR) spectroscopy, and High-Resolution Transmission Electron Microscopy (HRTEM) techniques to study the effects of EPS isolated from Bacillus subtilis and Pseudomonas putida on Zn sorption on γ-alumina. The results revealed that Zn sorption on aluminum oxide was pH-dependent and significantly influenced by bacterial EPS. At pH 7.5, Zn sorbed on γ-alumina was in the form of Zn-Al layered doubled hydroxide (LDH) precipitates, whereas at pH 5.5, Zn sorbed on γ-alumina was as a Zn-Al bidentate mononuclear surface complex. The amount of sorbed Zn at pH 7.5 was 1.3–3.7 times higher than that at pH 5.5. However, in the presence of 2 g L−1 EPS, regardless of pH conditions and EPS source, Zn + EPS + γ-alumina ternary complex was formed on the surface of γ-alumina, which resulted in decreased Zn sorption (reduced by 8.4–67.8%) at pH 7.5 and enhanced Zn sorption (increased by 10.0–124.7%) at pH 5.5. The FTIR and EXAFS spectra demonstrated that both the carboxyl and phosphoryl moieties of EPS were crucial in this process. These findings highlight EPS effects on Zn interacts with γ-alumina.
Show more [+] Less [-]The role of IL-6 released from pulmonary epithelial cells in diesel UFP-induced endothelial activation
2017
Bengalli, Rossella | Longhin, Eleonora | Marchetti, Sara | Proverbio, Maria C. | Battaglia, Cristina | Camatini, Marina
Diesel exhaust particles (DEP) and their ultrafine fraction (UFP) are known to induce cardiovascular effects in exposed subjects. The mechanisms leading to these outcomes are still under investigation, but the activation of respiratory endothelium is likely to be involved. Particles translocation through the air-blood barrier and the release of mediators from the exposed epithelium have been suggested to participate in the process. Here we used a conditioned media in vitro model to investigate the role of epithelial-released mediators in the endothelial cells activation.Diesel UFP were sampled from a Euro 4 vehicle run over a chassis dyno and lung epithelial BEAS-2B cells were exposed for 20 h (dose 5 μg/cm2). The exposure media were collected and used for endothelial HPMEC-ST1.6R cells treatment for 24 h. The processes related to oxidative stress and inflammation were investigated in the epithelial cells, accordingly to the present knowledge on DEP toxicity. The release of IL-6 and VEGF was significantly augmented in diesel exposed cells. In endothelial cells, VCAM-1 and ICAM-1 adhesion molecules levels were increased after exposure to the conditioned media. By interfering with IL-6 binding to its endothelial receptor, we demonstrate the role of this interleukin in inducing the endothelial response.
Show more [+] Less [-]In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies
2017
Han, Bing | Zhang, Man | Zhao, Dongye
This work tested a new remediation technology for in-situ degradation of estrogens by delivering a new class of stabilized manganese oxide (MnO2) nanoparticles in contaminated soils. The nanoparticles were prepared using a food-grade carboxymethyl cellulose (CMC) as a stabilizer, which was able to facilitate particle delivery into soil. The effectiveness of the technology was tested using 17β-estradiol (E2) as a model estrogen and three sandy loams (SL1, SL2, and SL3) as model soils. Column transport tests showed that the nanoparticles can be delivered in the three soils, though retention of the nanoparticles varied. The nanoparticle retention is strongly dependent on the injection pore velocity. The treatment effectiveness is highly dependent upon the mass transfer rates of both the nanoparticles and contaminants. When the E2-laden soils were treated with 22–130 pore volumes of a 0.174 g/L MnO(2) nanoparticle suspension, up to 88% of water leachable E2 was degraded. The nanoparticles were more effective for soils that offer moderate desorption rates of E2. Decreasing injection velocity or increasing MnO(2) concentration facilitate E2 degradation. The nanoparticles-based technology appears promising for in-situ oxidation of endocrine disruptors in groundwater.
Show more [+] Less [-]Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure
2017
Zhou, Wenjun | Ren, Lingwei | Zhu, Lizhong
Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd2+) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R2 > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd2+, in particular zeolite, and the percentage decreases for Cd2+ sorption increased with increasing concentrations of Cd2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd2+, however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd2+ sorption. The adsorbed form was found to inhibit Cd2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils.
Show more [+] Less [-]Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system
2017
Stenchly, Kathrin | Dao, Juliane | Lompo, Désiré Jean-Pascal | Buerkert, Andreas
The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators.
Show more [+] Less [-]Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium
2017
Song, Mengke | Yang, Ying | Jiang, Longfei | Hong, Qing | Zhang, Dayi | Shen, Zhenguo | Yin, Hua | Luo, Chunling
A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Show more [+] Less [-]Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project
2017
Zeng, Qinghui | Liu, Yi | Zhao, Hongtao | Sun, Mingdong | Li, Xuyong
Inter-basin water transfer projects might cause complex hydro-chemical and biological variation in the receiving aquatic ecosystems. Whether machine learning models can be used to predict changes in phytoplankton community composition caused by water transfer projects have rarely been studied. In the present study, we used machine learning models to predict the total algal cell densities and changes in phytoplankton community composition in Miyun reservoir caused by the middle route of the South-to-North Water Transfer Project (SNWTP). The model performances of four machine learning models, including regression trees (RT), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) were evaluated and the best model was selected for further prediction. The results showed that the predictive accuracies (Pearson's correlation coefficient) of the models were RF (0.974), ANN (0.951), SVM (0.860), and RT (0.817) in the training step and RF (0.806), ANN (0.734), SVM (0.730), and RT (0.692) in the testing step. Therefore, the RF model was the best method for estimating total algal cell densities. Furthermore, the predicted accuracies of the RF model for dominant phytoplankton phyla (Cyanophyta, Chlorophyta, and Bacillariophyta) in Miyun reservoir ranged from 0.824 to 0.869 in the testing step. The predicted proportions with water transfer of the different phytoplankton phyla ranged from −8.88% to 9.93%, and the predicted dominant phyla with water transfer in each season remained unchanged compared to the phytoplankton succession without water transfer. The results of the present study provide a useful tool for predicting the changes in phytoplankton community caused by water transfer. The method is transferrable to other locations via establishment of models with relevant data to a particular area. Our findings help better understanding the possible changes in aquatic ecosystems influenced by inter-basin water transfer.
Show more [+] Less [-]Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle
2017
Müller, Thorben | Prosche, Alexander | Muller, Caroline
The area of agriculturally used land and following to that the use of pesticides are steadily increasing. Insecticides do not only reduce pest organisms on crops but can also affect non-target organisms when present in sublethal concentrations in the environment. We investigated the effects of an exposure to sublethal pyrethroid (lambda-cyhalothrin) concentrations, at doses 20 and 60 times lower than the LC50, respectively, on reproductive traits and adult cuticular hydrocarbon (CHC) profiles of a leaf beetle (Phaedon cochleariae Fabricius). Furthermore, we tested for effects on growth and antennae symmetry of the offspring generation that was not exposed to the insecticide. Sublethal insecticide concentrations decreased the egg number produced by the adults and the hatching rate. Moreover, the chemical phenotype (CHC profile) of adults was altered in dependence of the insecticide treatment, with sex-specific effects. In the unexposed offspring of insecticide-exposed parents, a prolonged development time and a fluctuating asymmetry of the females' antennae were detected, revealing transgenerational effects. The insecticide effects on the CHC profiles of the parental generation might have been caused by changes in CHC precursors, which were potentially induced by the insecticide treatment of the insect diet. Such altered CHC pattern may have implications for intraspecific communication, e.g., in mate choice, as well as in an interspecific way, e.g., in interactions with other arthropod species. The observed detrimental transgenerational effects might be explainable by a reduced investment in the offspring, maternal transfer or epigenetic processes. An asymmetry of the antennae may lead to defects in the reception of chemical signals. In conclusion, the results disclose that, besides detrimental (transgenerational) effects on reproduction and development, an exposure to sublethal insecticide concentrations can impair the chemical communication between individuals, with impacts on the sender (i.e., the CHC profile) and the receiver (i.e., caused by asymmetry of the antennae).
Show more [+] Less [-]Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption
2017
Liu, Shan | Xu, Xiang-Rong | Qi, Zhan-Hui | Chen, Hui | Hao, Qin-Wei | Hu, Yong-Xia | Zhao, Jian-Liang | Ying, Guang-Guo
More attention was previously paid to adverse effects of steroids on aquatic organisms and their ecological risks to the aquatic environment. So far, little information has been reported on the bioaccumulative characteristics of different classes of steroids in cultured fish tissues. The present study for the first time provided a comprehensive analysis of the occurrence, bioaccumulation, and global consumers’ health risks via fish consumption of androgens, glucocorticoids and progestanges in typical freshwater cultured farms in South China. The numbers and total concentrations of steroids detected in the tissues of five common species of the cultured fish were in the order of plasma > bile > liver > muscle and plasma > bile, muscle > liver, respectively. The field bioaccumulation factors for the detected synthetic steroids ranged from 450 to 97,000 in bile, 450 to 65,000 in plasma, 2900 to 16,000 in liver, and 42 to 2600 in muscle of fish, respectively. This data suggests that steroids are bioaccumulative in fish tissues. Mostly important, 4-androstene-3,17-dione (AED) and cortisone (CRN) were found to be reliable chemical indicators to predict the levels of steroids in plasma and muscle of the inter-species cultured fish, respectively. Furthermore, the maximum hazard quotients (HQs) of testosterone and progesterone were 5.8 × 10−4 and 9.9 × 10−5, suggesting that human health risks were negligible via ingestion of the steroids-contaminated fish.
Show more [+] Less [-]