Refine search
Results 311-320 of 8,010
A spatio-temporal noise map completion method based on crowd-sensing Full text
2021
Huang, Min | Chen, Lina | Zhang, Yilin
The construction of noise maps is of great significance for the development of urban sustainability and the protection of residents’ physical and mental health. The traditional noise map construction method is difficult to be widely used because of its low update frequency and high drawing cost. Based on the crowd-sensing technology and Latent Factor Model (LFM), this paper proposes a new noise map completion method called Spatial-Temporally Related LFM (STR-LFM) for solving the problem of data sparseness. First, the geographic information features including Point of Interest (POI), road network and building outline are fully excavated, and then combine the correlation of the samples in the time dimension to construct the similarity matrixes. After that, use the k-nearest neighbor algorithm to find out the similar samples of missing positions, and finally regard their weighted fusion as the predicted values. Experimental results show that the recovery error is lower than other commonly used methods, and the proposed method has better stability when faced with data sparseness problems at different levels.
Show more [+] Less [-]Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption Full text
2021
Shruti, V.C. | Pérez-Guevara, Fermín | Elizalde-Martínez, I. | Kutralam-Muniasamy, Gurusamy
The continuously increasing presence of micro- and nanoplastics contamination in numerous food products for human consumption is threatening and their potential health effects towards humans remain uncertain. At present, investigations on packaged beverages (e.g. bottled drinking water, beer, milk and refreshments) have received scientific attention and represent an important part of microplastic research as humans are orally exposed to these anthropogenic contaminants every day. Rapid and effective detection methods are important to quantify micro- and nanoplastic particles with a great accuracy as well as to identify their sources and characteristics. A number of methods are currently in use to assess microplastics in packaged beverages; however, the great variations in methods and data acquisition render difficulties when comparing the results and developing the protocols. Based on the challenges, this paper aims to provide a comprehensive understanding of emerging technological approaches, points out the current limitations from sample preparation to quantification and present recommendations. From the results of our analysis, we postulate an example framework that can be applied to different types of drinking products for investigating micro- and nanoplastics. Overall, this review will serve as a first step towards harmonization of micro- and nanoplastic monitoring efforts and a point of reference to help direct future researches focusing on drinking products intended for human consumption.
Show more [+] Less [-]Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France Full text
2021
Gardes, Thomas | Portet-Koltalo, Florence | Debret, Maxime | Copard, Yoann
Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France Full text
2021
Gardes, Thomas | Portet-Koltalo, Florence | Debret, Maxime | Copard, Yoann
Agricultural use of organochlorine pesticides (OCPs) increased during the twentieth century but many of them have been progressively banned several decades after their introduction. Nevertheless, these lipophilic chemical compounds may persist in soils and sediments. From sediment deposits, it is possible to reconstruct the chronology of OCP releases in relation to former applications through time. Nevertheless, long-term fate of OCPs i.e. source, transfer, and storage through the watershed, is also related to the OCPs-sediment characteristics interactions, and our study showed the significant links between OCPs and labile or refractory organic matter. From sediment cores collected in a mainly agricultural watershed, the Eure River watershed (France), aldrin and lindane widespread applications during the 1950s–1970s have been recorded. While lindane applications declined after that date, according to the temporal trend of the stable isomer of hexachlorocyclohexane (β-HCH), α-, and γ-HCH have been recorded at significant levels in the 2000s, suggesting first local post-ban applications. Nevertheless, the relationships between these OCPs and labile organic matter resulted in an overestimation of the post-ban releases. Also, the detection of stable metabolites of dichlorodiphenyltrichloroethane (DDT) (i.e. 4,4′-DDE) and heptachlor (i.e. heptachlor epoxide) several decades after their ban, revealed the role of old deep soils erosion in the chronology of OCP releases and thus the reemergence of stable transformation products from historical OCPs.
Show more [+] Less [-]Chronology of Organochlorine Pesticides (OCPs) releases and interactions with sediment characterisitcs in the Eure River, France Full text
2021
Gardes, Thomas | Portet-Koltalo, Florence | Debret, Maxime | Copard, Yoann
We reconstruct the chronology of organochlorine pesticides (OCPs) releases and study the role of sediment characteristics (e.g organic matter) in the interpretation of this chronology. For that, sediment cores MAR16-02 and MAR15-01 were collected downstream of the Eure River watershed, the main tributary of the Seine estuary (France). The analysis of particulate OCPs in the MAR16-02 sediment core was performed using microwave-assisted extraction, with toluene:acetone mixture for extraction. Following the microwave-assisted extraction, a gas chromatograph (7890B, Agilent, US) coupled to a mass spectrometer (MS; 7000C) was used to measure the concentrations. Organic matter parameters from MAR15-01 sediment core was measured by Rock-Eval 6.
Show more [+] Less [-]Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China Full text
2021
Qiu, Pengfei | Chen, Youxin | Li, Chenjie | Huo, Da | Bi, Yonghong | Wang, Jianbo | Li, Yunchuang | Li, Renhui | Yu, Gongliang
Aquatic ecosystems and drinking water supply systems worldwide are increasingly affected by taste and odor episodes. In this study, molecular approaches including next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) were used to study the diversity and dynamics of cyanobacteria and 2-methylisoborneol (2-MIB)-producing cyanobacteria in Yuqiao Reservoir, a eutrophicated drinking water reservoir in Tianjin city, northern China. NGS revealed that the entire cyanobacterial community consisted of 16 genera, with Planktothrix (28.8%), Pseudanabaena (18.4%), Cylindrospermosis (7.8%), and Microcystis (7.6%) being the dominant genera, while microscopic examination identified only eight cyanobacterial genera. NGS of the 2-MIB synthesis gene revealed that Pseudanabaena and Planktothricoides were the main 2-MIB producers, with Pseudanabaena being dominant. This finding demonstrated that NGS can identify 2-MIB producers quickly and accurately and it can thus play an important role in the practical monitoring of aquatic ecology. The qPCR test showed 2-MIB synthesis gene with 4.27 × 10⁶ copies/L to 2.24 × 10⁹copies/L occurring at the three sampling sites. The mic gene copy number increased before the 2-MIB concentration increased, indicating that forecasting role in dealing with the 2-MIB concentration by gene copy number. Predicting 2-MIB by qPCR in the field must be verified with additional studies. The combination of NGS and qPCR can be an even more comprehensive method to provide early warning information to managers of reservoirs and water utilities facing taste and odor incidents. This is the first amplicon NGS dataset based on 2-MIB gene to study the diversity and dynamics of 2-MIB-producing cyanobacteria.
Show more [+] Less [-]Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke Full text
2021
Jin, Mengyi | Wang, Yanzi | An, Xiaoya | Kang, Honghua | Wang, Yixin | Wang, Guoliang | Gao, Yang | Wu, Shuiping | Reinach, Peter S. | Liu, Zuguo | Xue, Yuhua | Li, Cheng
Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein–protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.
Show more [+] Less [-]Selenium improved the combined remediation efficiency of Pseudomonas aeruginosa and ryegrass on cadmium-nonylphenol co-contaminated soil Full text
2021
Ni, Gang | Shi, Guangyu | Hu, Chengxiao | Wang, Xu | Nie, Min | Cai, Miaomiao | Cheng, Qin | Zhao, Xiaohu
Most chemical plant wastewater contains both organic and inorganic pollutants, which are easy to diffuse along with surface runoff. The combined pollution of nonylphenol (NP) and cadmium (Cd) in soil is a serious problem that has not attracted enough attention. Based on the effects of selenium (Se) and Pseudomonas aeruginosa (P. aeruginosa) on plant and soil microbial communities, we speculated that the application of Se and P. aeruginosa in soil could improve the phytoremediation efficiency of ryegrass on contaminated soil. In this study, pot experiments with Cd and NP co-contaminated soil were conducted, and the results showed that application of P. aeruinosa alone could improve the removal rates of NP and Cd by ryegrass, and the supplementary of Se further enhanced the effect of micro-phyto remediation, with the highest removal rates of NP and Cd were 79.6% and 49.4%, respectively. The application of P. aeruginosa plus Se reduced the adsorption of Cd and NP through C–O and Si–O–Fe of the soil, changed the enzyme activity, and also affected the changing trend of the microbial community in soil. Pseudomonas, Sphingomonadales, Nitrospira, and other beneficial bacteria were enriched after a 60-day period with P. aeruginosa and Se treatment, thus promoting the removal of NP and Cd. In light of the above results, we suggest that P. aeruginosa application can efficiently facilitate the phytoremediation of ryegrass on Cd-NP co-contaminated soil, and Se supplementation in soil showed the synergistic effect on the remediation.
Show more [+] Less [-]New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio) Full text
2021
Chai, Tingting | Cui, Feng | Di, Shanshan | Wu, Shenggan | Zhang, Yiming | Wang, Xinquan
Fluoxetine is frequently detected in aquatic environment, and chronic FLX exposure exhibits adverse effects on aquatic communities. Its chirality makes the adverse effects more complicated. This study aimed at the enantioselective cardiotoxicity in developmental zebrafish induced by racemic (rac-)/S-/R-fluoxetine. The accumulation profiles demonstrated that biotransformation of fluoxetine to norfluoxetine occurred during rac-fluoxetine exposure, with a higher enrichment of S-norfluoxetine than R-norfluoxetine. Heart malformations including pericardial edema, circulation abnormalities, and thrombosis were observed, and enantioselective changes also occurred. According to H&E staining and Masson’s trichrome staining, the loose severity of cardiac structure and cardiac fibrosis in rac-norfluoxetine treated group was worse than that in fluoxetine treated groups. Results of toxicity-associated parameters in our homochiral enantiomers’ exposure also indicated that the toxicity induced by S-fluoxetine was more severe than R-fluoxetine. Enantioselective arrhythmia in developmental zebrafish after chiral fluoxetine exposure could be caused by myocardial fibrosis, abnormal developmental processes, and the biotransformation of fluoxetine to norfluoxetine could make that worse. Our findings can be used to assess the environmental risk of the two enantiomers of fluoxetine that induce cardiotoxicity in aquatic organisms.
Show more [+] Less [-]Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae) Full text
2021
Nascimento, Ítalo Freitas | Guimarães, Abraão Tiago Batista | Ribeiro, Fabianne | Rodrigues, Aline Sueli de Lima | Estrela, Fernanda Neves | Luz, Thiarlen Marinho da | Malafaia, Guilherme
Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG’s neurotoxic potential. To the best of our knowledge, this is the first report on PEG’s biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians’ health and on the dynamics of their natural populations.
Show more [+] Less [-]Pharmacological inhibition of PAI-1 alleviates cardiopulmonary pathologies induced by exposure to air pollutants PM2.5 Full text
2021
Ghosh, Asish K. | Soberanes, Saul | Lux, Elizabeth | Shang, Meng | Aillon, Raul Piseaux | Eren, Mesut | Budinger, G.R Scott | Miyata, Toshio | Vaughan, Douglas E.
Numerous studies have established that acute or chronic exposure to environmental pollutants like particulate matter (PM) leads to the development of accelerated aging related pathologies including pulmonary and cardiovascular diseases, and thus air pollution is one of the major global threats to human health. Air pollutant particulate matter 2.5 (PM₂.₅)-induced cellular dysfunction impairs tissue homeostasis and causes vascular and cardiopulmonary damage. To test a hypothesis that elevated plasminogen activator inhibitor-1 (PAI-1) levels play a pivotal role in air pollutant-induced cardiopulmonary pathologies, we examined the efficacy of a drug-like novel inhibitor of PAI-1, TM5614, in treating PM₂.₅-induced vascular and cardiopulmonary pathologies. Results from biochemical, histological, and immunohistochemical studies revealed that PM₂.₅ increases the circulating levels of PAI-1 and thrombin and that TM5614 treatment completely abrogates these effects in plasma. PM₂.₅ significantly augments the levels of pro-inflammatory cytokine interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF), and this also can be reversed by TM5614, indicating its efficacy in amelioration of PM₂.₅-induced increases in inflammatory and pro-thrombotic factors. TM5614 reduces PM₂.₅-induced increased levels of inflammatory markers cluster of differentiation 107 b (Mac3) and phospho-signal transducer and activator of transcription-3 (pSTAT3), adhesion molecule vascular cell adhesion molecule 1 (VCAM1), and apoptotic marker cleaved caspase 3. Longer exposure to PM₂.₅ induces pulmonary and cardiac thrombosis, but TM5614 significantly ameliorates PM₂.₅-induced vascular thrombosis. TM5614 also reduces PM₂.₅-induced increased blood pressure and heart weight. In vitro cell culture studies revealed that PM₂.₅ induces the levels of PAI-1, type I collagen, fibronectin (Millipore), and sterol regulatory element binding protein-1 and 2 (SREBP-1 and SREBP-2), transcription factors that mediate profibrogenic signaling, in cardiac fibroblasts. TM5614 abrogated that stimulation, indicating that it may block PM₂.₅-induced PAI-1 and profibrogenic signaling through suppression of SREBP-1 and 2. Furthermore, TM5614 blocked PM₂.₅-mediated suppression of nuclear factor erythroid related factor 2 (Nrf2), a major antioxidant regulator, in cardiac fibroblasts. Pharmacological inhibition of PAI-1 with TM5614 is a promising therapeutic approach to control air pollutant PM₂.₅-induced cardiopulmonary and vascular pathologies.
Show more [+] Less [-]Neonicotinoids stimulate H2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community Full text
2021
Bao, Haibo | Gao, Haoli | Zhang, Jianhua | Lü, Haiyan | Yu, Na | Shao, Xusheng | Zhang, Yixi | Jin, Wei | Li, Shuqing | Xu, Xiaoyong | Tian, Jiahua | Xu, Zhiping | Li, Zhong | Liu, Zewen
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
Show more [+] Less [-]