Refine search
Results 3181-3190 of 3,208
Evaluation of Plant Responses to Atmospheric Nitrogen Deposition in France Using Integrated Soil-Vegetation Models Full text
2015
Probst, Anne | Obeidy, Carole | Gaudio, Noémie | Belyazid, Salim | Gégout, Jean-Claude | Alard, Didier | Corcket, Emmanuel | Party, Jean-Paul | Gauquelin, Thierry | Mansat, Arnaud | Nihlgård, Bengt | Leguédois, Sophie | Sverdrup, Harald | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Belyazid Consulting & Communication | Laboratoire d'Etudes des Ressources Forêt-Bois (LERFoB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Sol Conseil | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Department of Chemical Engineering ; Skane University Hospital [Lund] | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Absent | de Vries, Wim | Hettelingh, Jean-Paul | Posch, Maximilian
absent
Show more [+] Less [-]Impact of CO2-driven acidification on the development of the sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea) Full text
2015
Yuan, Xiutang | Shao, Senlin | Dupont, Sam | Meng, Leiming | Liu, Yongjian | Wang, Lijun
We evaluated the impact of ocean acidification on the early development of sea cucumber Apostichopus japonicus. The effect of pH-levels (pH 8.04, 7.85, 7.70 and 7.42) were tested on post-fertilization success, developmental (stage duration) and growth rates. Post-fertilization success decreased linearly with pH leading to a 6% decrease at pH 7.42 as compared to pH 8.1. The impact of pH on developmental time was stage-dependent: (1) stage duration increased linearly with decreasing pH in early-auricularia stage; (2) decreased linearly with decreasing pH in the mid-auricularia stage; but (3) pH decline had no effect on the late-auricularia stage. At the end of the experiment, the size of doliolaria larvae linearly increased with decreasing pH. In conclusion, a 0.62 unit decrease in pH had relatively small effects on A. japonicus early life-history compared to other echinoderms, leading to a maximum of 6% decrease in post-fertilization success and subtle effects on growth and development.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits),veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initialsuccess of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neuronsleading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Occurrence of pharmaceuticals in WWTP effluents and their impact in a karstic rural catchment of Eastern France Full text
2015
Chiffre, Axelle | Degiorgi, Francois | Bulete, Audrey | Spinner, Loic | Badot, Pierre-Marie | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre National de la Recherche Scientifique (CNRS) | Institut National de la Recherche Agronomique (INRA) | Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
Événement(s) lié(s) : - Molecules (PTIM) | The occurrence of pharmaceuticals in freshwater ecosystems provokes increasing concern due to their potential risk to non-target organisms and to human health. Pharmaceuticals are used in both human and veterinary medicine and are essentially released into the environment via wastewater treatment plants (WWTPs) and from livestock. In this study, 31 pharmaceuticals were analyzed in effluent and surface water upstream and downstream of two WWTPs in the Loue-Doubs rural karstic catchment in Eastern France. Diclofenac (965 and 2476 ng L-1), sulfamethoxazole (655 and 1380 ng L-1) and carbamazepine (566 and 1007 ng L-1) displayed the highest levels in the effluents of both WWTPs. Diclofenac levels were also high in surface water samples 300 and 166 ng L-1 in the River Doubs and the River Loue, respectively, followed by paracetamol (273 and 158 ng L-1) and sulfamethoxazole (126 and 73 ng L-1). In both rivers, the most critical compounds were found to be the antibiotic sulfamethoxazole (risk quotient (RQ) from 23.7 to 51.1) and ofloxacine (RQ from 1.1 to 18.9), which reached levels inducing toxic effects in aquatic organisms. This study showed that WWTP effluents are the major sources of the pharmaceuticals, but raw discharges from human residences, pastures and livestock manure represent significant sources of contamination of surface water and groundwater. The aim of this study was to assist scientists and authorities in understanding occurrence and sources of pharmaceuticals in order to improve water quality management in chalk streams.
Show more [+] Less [-]Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties Full text
2015
Woignier T. | Clostre F. | Cattan P. | Lesueur Jannoyer M.
Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols) contain nanoclay (allophane) with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone) to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.<br />We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols. (Résumé d'auteur)
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits),veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initialsuccess of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neuronsleading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites | Pesticides néonicotinoïdes. Tendances, usages et modes d’action des métabolites Full text
2014
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L.P. | Bonmatin, Jean-Marc | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J. | van Der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M. | Copernicus Institute of Sustainable Development [Utrecht] ; Universiteit Utrecht / Utrecht University [Utrecht] | Beekeeping Research and Information Center | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
. | Depuis leur découverte dans les années 1980, les pesticides néonicotinoïdes sont devenus la classe la plus largement utilisée des insecticides, dans le monde entier, avec des applications à grande échelle allant de la protection des plantes (cultures, légumes, fruits), aux produits vétérinaires et aux biocides pour le contrôle des invertébrés parasites en pisciculture. Dans cette revue, nous joignons la fipronil, un phénylpyrazole, aux néonicotinoïdes en raison de la similitude de leur toxicité, des profils physico-chimiques, et de leur présence dans l'environnement. Les néonicotinoïdes et le fipronil représentent actuellement environ un tiers du marché mondial des insecticides ; la production mondiale annuelle de l'archétype des néonicotinoïdes, l'imidaclopride, a été estimée au total à 20 000 tonnes de substance active en 2010. Le succès initial des néonicotinoïdes et du fipronil est dû à plusieurs raisons : (1) il n'y avait pas de résistance connue à ces pesticides chez les ravageurs cibles, principalement en raison de leur développement récent, (2) leurs propriétés physico-chimiques rassemblaient de nombreux avantages par rapport à celles des générations précédentes d’insecticides (c’est-à-dire, les organophosphorés, les carbamates, les pyréthrinoïdes, etc.), et,(3) ils partagent et supposent des risques réduits pour l’opérateur et le consommateur. En raison de leur nature systémique, ils sont absorbés par les racines ou les feuilles et transloqués à toutes les parties de la plante, laquelle, à son tour, est effectivement toxique pour les insectes herbivores. La toxicité persiste pendant une période de temps variable en fonction de la plante, de son stade de croissance, et de la quantité de pesticide appliquée. Une grande variété d'applications sont disponibles, y compris la NON Bonne Pratique Agricole(GAP)prophylactique d’application courante en enrobage de semences. En conséquence de leur utilisation extensive et de leurs propriétés physico-chimiques, ces substances peuvent être trouvés dans tous les compartiments environnementaux, y compris le sol, l'eau et l'air. Les néonicotinoïdes et le fipronil fonctionnent en perturbant la transmission nerveuse dans le système nerveux central des invertébrés.Les néonicotinoïdes imitent l'action des neurotransmetteurs, tandis que le fipronil inhibe les récepteurs neuronaux. Ce faisant, les premiers stimulent en permanence les neurones conduisant finalement les invertébrés cibles à la mort. Comme pratiquement tous les insecticides, ils peuvent également avoir des effets létaux et sublétaux sur les organismes non cibles, y compris les vertébrés prédateurs d'insectes. En outre, une gamme d’effets synergiques avec d'autres facteurs de stress a été documentée. Ici, nous passons en revue de façon extensive leurs voies métaboliques, montrant comment les composés spécifiques et les métabolites communs, lesquels peuvent eux-mêmes être toxiques, forment ensemble deux cas. Ceux-ci peuvent entraîner une toxicité prolongée. Compte tenu de leur large expansion commerciale, leur mode d'action, leurs propriétés systémiques chez les plantes, leur persistance et leur devenir environnemental, couplés avec des informations limitées sur les profils de toxicité de ces composés et de leurs métabolites, les néonicotinoïdes et le fipronil peuvent entraîner des risques importants pour l'environnement. Une évaluation globale des effets collatéraux potentiels de leur utilisation est donc opportune. Le présent document, et les chapitres suivants dans cette revue de la littérature mondiale, explorent ces risques et montrent une quantité croissante de preuves qui, sur la base de la persistance et de faibles concentrations de ces pesticides, posent de sérieux risques d’impacts environnementaux indésirables.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2014 | 2015
Simon-Delso, Noa | Amaral-Rogers, Vanessa | Belzunces, Luc P | Bonmatin, Jean-Marc | Chagnon, Madeleine | Downs, Craig | Furlan, Lorenzo | Gibbons, David W | Giorio, Chiara | Girolami, Vincenzo | Goulson, Dave | Kreutzweiser, David P | Krupke, Christian H | Liess, Matthias | Whitehorn, Penelope R | Utrecht University | Buglife | French National Institute for Agricultural Research (INRA) | The National Center for Scientific Research (CNRS) | University of Quebec in Montreal (UQAM) | Haereticus Environmental Laboratory | Veneto Agricoltura | Royal Society for the Protection of Birds (RSPB) | University of Cambridge | University of Padua | University of Sussex | Natural Resources Canada | Purdue University | Helmholtz Centre for Environmental Research-UFZ, Germany | Biological and Environmental Sciences | 0000-0001-9852-1012
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts. | Additional co-authors: E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, M. Wiemers
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
International audience | Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | Praagh, Jaap van | Van der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Effects of neonicotinoids and fipronil on non-target invertebrates Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
Effects of neonicotinoids and fipronil on non-target invertebrates Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. Thereis a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Show more [+] Less [-]Effects of neonicotinoids and fipronil on non-target invertebrates Full text
2015
Pisa, L.W. | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Mcfield, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | van Der Sluijs, Jeroen P. | van Dyck, H. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Haereticus Environmental Laboratory ; Partenaires INRAE | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani, Kasungu national park ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Centre Apicole de Recherche et Information ; Partenaires INRAE | Washington State University (WSU) | Centre for the Study of the Sciences and the Humanities (SVT) ; University of Bergen (UiB) | Université Catholique de Louvain = Catholic University of Louvain (UCL)
International audience | We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (<em>Apis mellifera</em>) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Show more [+] Less [-]Effects of neonicotinoids and fipronil on non-target invertebrates | Effets des néonicotinoïdes et du fipronil sur les invertébrés Full text
2015
Pisa, L. W. | Amaral-Rogers, V. | Belzunces, L.P. | Bonmatin, Jean-Marc | Downs, C. A. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. | Liess, M. | Mcfield, M. | Morrissey, C. A. | Noome, D. A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | van Der Sluijs, J. P. | van Dyck, H. | Wiemers, M. | Laboratoire de Toxicologie Environnementale (LTE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Department Community Ecology [UFZ Leipzig] ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ)
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Show more [+] Less [-]Effects of neonicotinoids and fipronil on non-target invertebrates Full text
2015
Pisa, L. W. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Downs, C. A. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C. A. | Noome, D. A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, J. P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Show more [+] Less [-]Ambulacral length with number of pore pairs/tubercles for both species of sea urchins and for six sampling sites to quantify fluctuating asymmetry Full text
2015
Savriama, Yoland | Stige, Leif Christian | Gerber, Sylvain | Pérez, Thierry | Alibert, Paul | David, Bruno
Ambulacral length with number of pore pairs/tubercles for both species of sea urchins and for six sampling sites to quantify fluctuating asymmetry Full text
2015
Savriama, Yoland | Stige, Leif Christian | Gerber, Sylvain | Pérez, Thierry | Alibert, Paul | David, Bruno
The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.Methods: We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.Results: For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Conclusions: Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.
Show more [+] Less [-]Impact of sewage pollution on two species of sea urchins in the Mediterranean Sea (Cortiou, France): Radial asymmetry as a bioindicator of stress Full text
2015
Savriama, Yoland | Stige, Leif Christian | Gerber, Sylvain | Perez, Thierry | Alibert, Paul | David, Bruno
The surroundings of the Cortiou sewage are among the most polluted environments of the French Mediterranean Sea (Marseilles, France). So far, no studies have precisely quantified the impact of pollution on the development of organisms in this area.We used a fluctuating asymmetry (FA) measure of developmental instability (DI) to assess environmental stress in two species of radially symmetric sea urchins (Arbacia lixula and Paracentrotus lividus). For six sampling sites (Cortiou, Riou, Maire, East Maire, Mejean, and Niolon), levels of FA were calculated from continuous and discrete skeletal measures of ambulacral length, number of pore pairs and primary tubercles.For both species, the most polluted sampling site, Cortiou, displayed the highest level of FA, while the Maire and East Maire sampling sites displayed the lowest levels. A. lixula revealed systematic differences in FA among sampling sites for all characters and P. lividus showed differences in FA for the number of primary tubercles.Statistical analyses of FA show a concordance between the spatial patterns of FA among sampling sites and the spatial distribution of sewage discharge pollutants in the Cortiou area. High developmental stress in these sampling sites is associated with exposure to high concentrations of heavy metals and many harmful organic substances contained in wastewater. FA estimated from structures with complex symmetry appears to be a fast and reliable tool to detect subtle differences in FA. Its use in biomonitoring programs for inferring anthropogenic and natural environmental stress is suggested.
Show more [+] Less [-]Ambulacral length measured for both species of sea urchins and for six sampling sites off Marseille Full text
2015
Savriama, Yoland | Stige, Leif Christian | Gerber, Sylvain | Pérez, Thierry | Alibert, Paul | David, Bruno
Number of pore pairs/tubercles counted for both species of sea urchins and for six sampling sites off Marseille Full text
2015
Savriama, Yoland | Stige, Leif Christian | Gerber, Sylvain | Pérez, Thierry | Alibert, Paul | David, Bruno
Soil management
2015
Lucas-Borja, Manuel Esteban
Toward a consistent accounting of water as a resource and a vector of pollution in the LCA of agricultural products: Methodological development and application to a perennial cropping system Full text
2015
Payen S.
Identifying the environmental hot spots of agriculture is crucial in a context where humanity has to produce more food and pollute less. Life Cycle Assessment (LCA) is a powerful tool to evaluate the environmental impacts of agricultural systems, but is still fraught with shortcomings, notably for the evaluation of impacts of freshwater use and of salinisation of water and soil. The core complexity lies in the double status of water and soil resources in LCA which are both a resource and a compartment. The three questions answered by the thesis were: How to better assess the impacts associated with water and salts fluxes? What model should be developed for a relevant inventory of field water and salts fluxes? Is the developed model operational for an LCA study on a perennial crop? The first question was answered through a literature review on salinisation impacts in LCA. It revealed the main environmental mechanisms of salinisation, the factors involved, and discussed the soil and water status, notably through a consistent definition of the technosphere and ecosphere boundary. To answer the second question, a critical analysis of water inventory and agri-food LCA databases showed their inadequacy for the LCA-based ecodesign of cropping systems: they provide estimates of theoretical water consumed, rely on data and methods presenting limitations, and do not support the calculation of both consumptive and degradative water use impacts. For the LCA-based ecodesign of cropping systems, the inventory of water flows should be based on a model simulating evapotranspiration, deep percolation and runoff accounting for crop specificities, pedo-climatic conditions and agricultural managements. For herbaceous crops, the FAO Aquacrop model constitutes a relevant and operational model, but no dedicated model is available to-date for perennials. To fill this gap, a tailored and simple model, so called E.T., was elaborated for the inventory of field water and salt flows for annual
Show more [+] Less [-]