Refine search
Results 331-340 of 5,149
Nanoparticulate-specific effects of silver on teleost cardiac contractility Full text
2018
Callaghan, Neal Ingraham | Williams, Kenneth Javier | Bennett, J Craig | MacCormack, Tyson James
Silver nanoparticles (nAg), due to their biocidal properties, are common in medical applications and are used in more consumer products than any other engineered nanomaterial. This growing abundance, combined with their ability to translocate across the epithelium and bioaccumulate, suggests that internalized nAg may present a risk of toxicity to many organisms in the future. However, little experimentation has been devoted to cardiac responses to acute nAg exposure, even though nAg is known to disrupt ion channels even when ionic Ag+ does not. In this study, we examined the cardiac response to nAg exposure relative to a sham and an ionic AgNO3 control across cardiomyocyte survival and homeostasis, ventricular contractility, and intrinsic pacing rates of whole hearts. Our results suggest that nAg, but not Ag+ alone, inhibits force production by the myocardium, that Ag in any form disrupts normal pacing of cardiac contractions, and that these responses are likely not due to cytotoxicity. This evidence of nanoparticle-specific effects on physiology should encourage further research into nAg cardiotoxicity and other potential sublethal effects.
Show more [+] Less [-]Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children Full text
2018
Rodrigues, Juliana L.G. | Bandeira, Matheus J. | Araújo, Cecília F.S. | dos Santos, Nathália R. | Anjos, Ana Laura S. | Koin, Ng Lai | Pereira, Laiz C. | Oliveira, Sérgio S.P. | Mergler, Donna | Menezes-Filho, José A.
Previously, we showed that manganese (Mn) levels in settled dust in elementary schools increased at a rate of 34.1% per km closer to a ferro-manganese alloy plant in the rainy season. In this study, we investigated how this environmental pollution indicator varied in the dry season and if there was an association with Mn biomarker levels in school-aged children. Dust samples were collected with passive samplers (disposable Petri dishes) placed in interior and exterior environments of 14 elementary schools. Occipital hair, toenails and blood samples were collected from 173 students aged 7–12 years from three of these schools, with varying distance from the industrial plant. Mn and lead (Pb) levels were measured by graphite furnace atomic absorption spectrometry. Mn concentration geometric means (GM) in dust fall accumulation in interior environments of schools located at 2, 4, 6 and > 6 km-radii from the plant were 2212, 584, 625 and 224 μg Mn/m2/30 days, respectively. The modelled rate of change of dust Mn levels decreases by 59.8% for each km further from the plant. Pb levels in settled dust varied between 18 and 81 μg/m2/30 days with no association with distance from the plant. Blood lead levels median (range) were 1.2 μg/dL (0.2–15.6), of which 97.8% were <5 μg/dL. Mn in hair and toenails were 0.66 μg/g (0.16–8.79) and 0.86 μg/g (0.15–13.30), respectively. Mn loading rates were positively associated with log MnH (β = 1.42 × 10−5, p < 0.001) after adjusting for children's age; and also with log MnTn (β = 2.31 × 10−5, p < 0.001) independent of age. Mn loading rates explained 18.5% and 28.5% of the variance in MnH and MnTn levels, respectively. School-aged children exposure to Mn, independently of age, increases significantly with school proximity to the ferro-manganese alloy plant.
Show more [+] Less [-]Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid Full text
2018
Gao, Peng | Guo, Huiyuan | Zhang, Zhaohan | Ou, Cuiyun | Hang, Jian | Fan, Qi | He, Chuan | Wu, Bing | Feng, Yujie | Xing, Baoshan
We describe a batch-extraction with simulated digestive fluid (salivary fluid, gastric fluid and intestinal fluid) to estimate the bioaccessibility of inhaled trace metals (TMs) in particulate matter less than 10 and 2.5 μm in aerodynamic diameter (PM₁₀ and PM₂.₅). Concentrations of the assayed TMs (As, Cd, Cr, Ni, Mn, Cu, Zn, Sb, Hg and Pb) were determined in PM₁₀ and PM₂.₅ samples by inductively coupled plasma-mass spectrometry. The TMs with the largest soluble fractions for airborne PM collected from winter and summer in saliva were Mn and Sb, respectively; in seasons this became Co in gastric fluid and Cu in intestinal fluid. Clearly, bioaccessibility is strongly dependent on particle size, the component of simulated digestive fluids (e.g., pH, digestive enzymes pepsin and trypsin), and the chemical properties of metal ions. The particle size and seasonal variation affected the inhaled bioaccessible fraction of PM-bound TMs during mucociliary clearance, which transported PM from the tracheal and the bronchial region to the digestive system. This study provides direct evidence for TMs in airborne PM being bioaccessible TMs are likely to possess an enhanced digestive toxic potential due to airborne PM pollution.
Show more [+] Less [-]Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models Full text
2018
Gollapalli, Muralidhar | Kota, Sri Harsha
Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH₄ and CO₂ emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH₄ and CO₂ are 68 and 92 mg/min/m², respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH₄ and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH₄ in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH₄ emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH₄ emission flux in this study. Assuming that this higher prediction of CH₄ levels observed in this study holds well for other landfills in this region, a new CH₄ emission inventory (Units: Tonnes/year), with a resolution of 0.1⁰ × 0.1⁰ has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models.
Show more [+] Less [-]Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus Full text
2018
Kong, Lingjun | Han, Meina | Shih, Kaimin | Su, Minhua | Diao, Zenghui | Long, Jianyou | Chen, Diyun | Hou, Li'an | Peng, Yan
Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO₃ to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca₅(PO₄)₃(OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss.
Show more [+] Less [-]Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa Full text
2018
Yang, Yangyang | Hou, Jun | Wang, Peifang | Wang, Chao | Wang, Xun | You, Guoxiang
The presence of abundant extracellular polymeric substances (EPS) play a vital role in affecting heteroaggregation process and toxicity of nanoparticles (NPs) to Microcystis aeruginosa. Interactions between n-CeO₂ and cyanobacteria with/without EPS and the toxicity of n-CeO₂ to M. aeruginosa were investigated in this study. Aggregation kinetics of n-CeO₂ under both soluble EPS (SEPS) and bound EPS (BEPS) indicated the presence of EPS could induced the formation of EPS-NPs aggregates. Heteroaggregation between cells and n-CeO₂ was confirmed through co-settling experiment and SEM-EDS observation. SEPS contributed to the observable heteroaggregation using spectral measurement. Heteroaggregation between cells and n-CeO2 under no BEPS was hardly obtained through spectral measurement, but SEM-EDS observation convinced this process. And the DLVO theory explained this heteroaggregation process under various EPS conditions, where the energy barrier decreased with gradual EPS extraction. In addition, the order for 96 h half growth inhibition concentration (IC₅₀) was Raw M9 > M9-SEPS > M9+BEPS > M9-BEPS. These results revealed that not all heteroaggregation between cell-NPs can lead to the NPs toxicity to cells. BEPS act more important role in buffering against the toxicity of NPs from ambient adverse factors, but SEPS increase the stability of NPs which could aggravate the adverse effects of NPs in the environment.
Show more [+] Less [-]Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen, China Full text
2018
Wang, Qiong | Zhang, Huanhuan | Liang, Qianhong | Knibbs, Luke D. | Ren, Meng | Li, Changchang | Bao, Junzhe | Wang, Suhan | He, Yiling | Zhu, Lei | Wang, Xuemei | Zhao, Qingguo | Huang, Cunrui
The impact of ambient air pollution on pregnant women is a concern in China. However, little is known about the association between air pollution and preeclampsia and the potential modifying effects of meteorological conditions have not been assessed. This study aimed to assess the effects of prenatal exposure to air pollution on preeclampsia, and to explore whether temperature and humidity modify the effects. We performed a retrospective cohort study based on 1.21 million singleton births from the birth registration system in Shenzhen, China, between 2005 and 2012. Daily average measurements of particulate matter <10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), air temperature (T), and dew point (Td) were collected. Logistic regression models were performed to estimate associations between air pollution and preeclampsia during the first and second trimesters, and during the entire pregnancy. In each time window, we observed a positive gradient of increasing preeclampsia risk with increasing quartiles of PM10 and SO2 exposure. When stratified by T and Td in three categories (<5th, 5th −95th, and >95th percentile), we found a significant interaction between PM10 and Td on preeclampsia; the adverse effects of PM10 increased with Td. During the entire pregnancy, there was a null association between PM10 and preeclampsia under Td < 5th percentile. Preeclampsia risk increased by 23% (95% CI: 19–26%) when 5th < Td < 95th percentile, and by 34% (16–55%) when Td > 95th percentile. We also found that air pollution effects on preeclampsia in autumn/winter seasons were stronger than those in the spring/summer. This is the first study to address modifying effects of meteorological factors on the association between air pollution and preeclampsia. Findings indicate that prenatal exposure to PM10 and SO2 increase preeclampsia risk in Shenzhen, China, and the effects could be modified by humidity. Pregnant women should limit air pollution exposure, particularly during humid periods.
Show more [+] Less [-]Role of black carbon in soil distribution of organochlorines in Lesser Himalayan Region of Pakistan Full text
2018
ʻAlī, ʻUs̲mān | Riaz, Rahat | Sweetman, Andrew James | Jones, K. C. (Kevin C.) | Li, Jun | Zhang, Gan | Malik, Riffat Naseem
Black carbon and total organic carbon (TOC) along with organochlorines (OCs) were analyzed in soils from four sampling zones of Lesser Himalayan Region based on source proximity/anthropogenic influences along the altitude. CTO-375 method was used for BC analysis while OCs were analyzed by GC-MS/MS system. BC and TOC ranged between 0.16–1.77 and 6.8–41.3 mg g−1 while those of OCPs and PCBs ranged between 0.69 and 5.77 and 0.12–2.55 ng g−1, respectively. ∑DDTs were the dominant (87.9%) among OCPs while tri- and tetra- (65.5%) homologue groups among PCBs. Hexa-PCBs, however also showed higher contribution (20.4%) in the region. Source diagnostic ratios of DDE + DDD/DDT (0.1–1.53) indicated both fresh and old input while α-HCH/γ-HCH (0.19–2.49) showed presence of lindane in the region. Higher concentration of OCs were observed in Zone C at altitudinal range of 737–975 masl that are close to the human influences and potential sources of POPs. The results of linear regression analysis revealed potential input of BC in soil distribution of OC concentrations in the region.
Show more [+] Less [-]Illicit drug ketamine induces adverse effects from behavioral alterations and oxidative stress to p53-regulated apoptosis in medaka fish under environmentally relevant exposures Full text
2018
Liao, Pei-Han | Yang, Wen-Kai | Yang, Ching-Hsin | Lin, Chun-Hon | Hwang, Chin-Chu | Chen, Pei-Jen
With increasing problems of drug abuse worldwide, aquatic ecosystems are contaminated by human pharmaceuticals from the discharge of hospital or municipal effluent. However, ecotoxicity data and related toxic mechanism for neuroactive controlled or illicit drugs are still lacking, so assessing the associated hazardous risk is difficult. This study aims to investigate the behavioral changes, oxidative stress, gene expression and neurotoxic or apoptosis effect(s) in larvae of medaka fish (Oryzias latipes) with environmentally relevant exposures of ketamine (KET) solutions for 1–14 days. KET exposure at an environmentally relevant concentration (0.004 μM) to 40 μM conferred specific patterns in larval swimming behavior during 24 h. At 14 days, such exposure induced dose- and/or time-dependent alteration on reactive oxygen species induction, the activity of antioxidants catalase and superoxide dismutase, glutathione S-transferase and malondialdehyde contents in fish bodies. KET-induced oxidative stress disrupted the expression of acetylcholinesterase and p53-regulated apoptosis pathways and increased caspase expression in medaka larvae. The toxic responses of medaka larvae, in terms of chemical effects, were qualitatively analogous to those of zebrafish and mammals. Our results implicate a toxicological impact of waterborne KET on fish development and human health, for potential ecological risks of directly releasing neuroactive drugs-containing wastewater into the aquatic environment.
Show more [+] Less [-]Environmental risk assessment of triclosan and triclocarban from personal care products in South Africa Full text
2018
Musee, N.
Trends in the widespread use of personal care products (PCPs) containing triclosan (TCS) and triclocarban (TCC) have led to continuous emissions of these chemicals into the environment. Consequently, both chemicals are ubiquitously present at high concentrations in the aquatic systems based on widely reported measured environmental concentration (MECs) data in different environmental systems (e.g. freshwater) worldwide, especially in developed countries. In developing countries, however, lack of MECs data is a major issue, and therefore, inhibits effective risk assessment of these chemicals. Herein, TCS and TCC releases from personal care products (PCPs) were quantified, using a modelling approach to determine predicted environmental concentrations (PECs) in wastewater, freshwater, and soils, and likely risk(s) were estimated by calculating risk quotient (RQs). TCS and TCC in freshwater had RQs >1 based on estimated PECs with wide variations (≈2–232) as performed across the three dilutions factors (1, 3, and 10) considered in this study; an indicator of their likely adverse effect on freshwater organisms. In untreated and treated wastewater, TCS RQs values for bacteria were >1, but <1 for TCC, implying the former may adversely affect the functioning of wastewater treatment plants (WWTPs), and with no plausible impacts from the latter. In terrestrial systems, RQ results for individual chemicals revealed no or limited risks; therefore, additional investigations are required on their toxicity, as effects data was very limited and characterised by wide variations. Future national monitoring programs in developing countries should consider including TCS and TCC as the results suggest both chemicals are of concern to freshwater, and TCS in WWTPs. Potential risks of their metabolites remain unquantified to date.
Show more [+] Less [-]