Refine search
Results 331-340 of 6,534
Prevention and control of COVID-19 in nursing homes, orphanages, and prisons
2020
Wang, Jiao | Yang, Wenjing | Pan, Lijun | Ji, John S. | Shen, Jin | Zhao, Kangfeng | Ying, Bo | Wang, Xianliang | Zhang, Liubo | Wang, Lin | Shi, Xiaoming
As the number of Coronavirus Disease (2019) (COVID-19) cases increase globally, countries are taking more aggressive preventive measures against this pandemic. Transmission routes of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) include droplet and contact transmissions. There are also evidence of transmission through aerosol generating procedures (AGP) in specific circumstances and settings. Institutionalized populations without mobility and living in close proximity with unavoidable contact are especially vulnerable to higher risks of COVID-19 infection, such as the elderly in nursing homes, children in orphanages, and inmates in prisons. In these places, higher prevention and control measures are needed. In this study, we proposed prevention and control strategies for these facilities and provided practical guidance for general measures, health management, personal protection measures, and prevention measures in nursing homes, orphanages, and prisons, respectively.
Show more [+] Less [-]Control of the mobility of heavy metals in soil from disposal of bio-solid and olive by-product ashes using waste additives
2020
Vamvuka, D. | Papaiōannou, G. | Alexandrakis, S. | Stratakis, A.
In compliance to European Union directives to reuse urban wastes as secondary fuels, the aim of present work was to investigate and control the environmental impact from disposal of ashes generated by combustion of a bio-solid, an olive by-product and their blend. Two waste materials were admixed with the ash and their performance as potential stabilizers was assessed. Metals and ions leached through a soil were measured.The results showed that dissolution of some alkaline substances raised the pH of water effluents, decreasing the extractability of heavy metals from the ashes. In some cases Cr and As leached reached hazardous levels. Upon addition of waste materials to ash, the concentration of Cr in liquid extracts was reduced by 35–97%, while that of Cu and As by 100%. All heavy metal values measured in the leachates were decreased to values below legislation limits. The mineralogy, the chemistry and the pH of solids involved were key factors for the retention of elements.
Show more [+] Less [-]Triclosan and triclocarbon in maternal-fetal serum, urine, and amniotic fluid samples and their implication for prenatal exposure
2020
Bai, Xueyuan | Zhang, Bo | He, Yuan | Hong, Danhong | Song, Shiming | Huang, Yingyan | Zhang, Tao
Triclosan (TCS) and Triclocarbon (TCC) are chlorinated synthetic antimicrobial agents formaternal urinelated in quantities of consumer products. However, the biomonitoring of direct exposure reflection for fetuses are rare. In this study, we determine the concentrations of TCS and TCC in paired maternal serum, cord serum, maternal urine, and amniotic fluid samples collected from a cohort of 95 expecting mother-fetal pairs in Southern China. TCS and TCC are detected widely (detection rates: >76.9%) in maternal serum, cord serum, maternal urine, and amniotic fluid samples. TCS is found to be the predominant antimicrobial agent with median concentrations in maternal serum (1.5 ng/mL) and cord serum (1.8 ng/mL) that are one order of magnitude higher than those of tcc in maternal serum (0.085 ng/mL) and cord serum (0.052 ng/mL), respectively. Cord serum concentrations of tcs and tcc correlated well with the concentrations in maternal serum, which reflect the mothers’ contribution to fetal exposure. The higher median ratio of cord serum/maternal serumTCS (0.95) compared to that of cord serum/maternal serumTCC (0.53) indicates high placental transmission ability of TCS. Moreover, the facility to penetrate the placental barrier and hard to depurate characteristics lead to the long residence of TCS in the fetal environment, causing great concern over the prenatal exposure risks during the critical window of fetal development. This study provides a novel contribution by increasing existing knowledge on the exposure assessment of TCS and TCC during pregnancy through the exploration of matched maternal-fetal samples.
Show more [+] Less [-]Halogenated organic contaminants of concern in urban-influenced waters of Lake Ontario, Canada: Passive sampling with targeted and non-targeted screening
2020
Zhang, Xianming | Robson, Matthew | Jobst, Karl | Pena-Abaurrea, Miren | Muscalu, Alina | Chaudhuri, Sri | Marvin, Chris | Brindle, Ian D. | Reiner, Eric J. | Helm, Paul
Passive samplers are useful tools for monitoring hydrophobic, persistent, and potentially bioaccumulative contaminants in the environment. In this study, low density polyethylene passive samplers were deployed in urban-influenced and background nearshore freshwaters of northwestern Lake Ontario and analyzed for a broad range of both legacy halogenated organic contaminants (HOCs) and halogenated flame retardants (HFRs). Non-targeted analysis was conducted for screening additional halogenated substances. For most compounds, concentrations were greatest in the industrialized Hamilton Harbour and more generally at sites that have stronger influences of wastewater effluent discharges and stormwater run-off through rivers and creeks. Polychlorinated biphenyls (PCBs) remain the dominant class of HOCs in water, with dissolved-phase concentrations ranging from 10 to 4100 pg/L (ΣPCBs), followed by polybrominated diphenylethers (ΣPBDEs; 14–960 pg/L) and the organochlorine pesticides (OCPs; 22–290 pg/L). Several non-PBDE brominated flame retardants (nBFRs) and chlorinated Dechlorane-related compounds were detected, with hexabromocyclododecanes (ΣHBCDD; sum of 3 diastereoisomers) the most abundant (1.0–21 pg/L). Non-targeted screening of samples by high resolution mass spectrometry using Kendrick mass defect plots for data analysis indicated that several other halogenated compounds were present in waters at relatively high abundances compared to the flame retardants, based on semi-quantitative estimates. These included methyl-triclosan, four halogenated anisoles (2,4,6-tribromoanisole, dimethyl-trichloroanisole, pentachloroanisole, and pentachlorothioanisole), and pentachloro-aniline. Dissolved-phase methyl-triclosan was estimated to contribute up to approximately 40% of the summed target HOC concentrations. Polyethylene passive samplers provided an excellent medium for both non-targeted screening of HOCs not currently included in monitoring programs and tracking brominated and chlorinated chemicals slated for reductions in uses and emissions through international (Stockholm Convention) and binational (Great Lakes) agreements.
Show more [+] Less [-]Occurrence and weathering of petroleum hydrocarbons deposited on the shoreline of the North Saskatchewan River from the 2016 Husky oil spill
2020
Yang, Zeyu | Shah, Keval | Laforest, Sonia | Hollebone, Bruce P. | Situ, Jane | Crevier, Charlotte | Lambert, Patrick | Brown, Carl E. | Yang, Chun
Following the 16TAN Husky oil spill along the North Saskatchewan River (NSR), the occurrence and natural attenuation of the petroleum hydrocarbons were assessed by analyzing the littoral zone sediments/oil debris collected from July 2016 to October 2017. Husky oil-free, mixed sediment-Husky oil, and Husky oil debris samples were identified for all the collected samples. Shoreline sediments were contaminated by mixed biogenic, pyrogenic and petrogenic inputs prior to the spill. Oil stranded on the shoreline of NSR was moved or buried due to the very dynamic conditions of the shoreline, or cleaned through a series of cleanup activities after the spill. Most normal alkanes were naturally weathered, whereas most of the branched alkanes and all of the saturated petroleum biomarkers remained. Some lighter molecular weight (e.g., 2 to 3-ring) polycyclic aromatic hydrocarbons (PAHs) were lost rapidly after the spill, whereas sulfur containing components, e.g., dibenzothiophenes and benzonaphthothiiophenes, and those having a heavier molecular weight did not change markedly even 15 months post-spill. Similarly, some light hydrocarbons (e.g., <C₁₀) were lost over the first kilometers from the point of entry (POE), while heavier hydrocarbons did not show any major differences away from the POE. Very large inter-site and inter-survey discrepancies were found for samples. Evaporation into the air and dissolution into water, combined with biodegradation, were together or independently the main contributors to the loss of the light molecular hydrocarbons.
Show more [+] Less [-]Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio)
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
Show more [+] Less [-]Edible size of polyethylene microplastics and their effects on springtail behavior
2020
Kim, Shin Woong | An, Youn-Joo
Many reliable studies have provided evidence of microplastic ingestion by soil organisms. However, further research is required to determine the edible size of microplastics, especially given the ubiquity of microplastics and their adverse effects on the soil environment. Determining the size range of microplastics that can be ingested by soil organisms is crucial for the prediction of the exposure route and toxicity mechanisms of microplastics in soil. Springtails, organisms prevalent in a wide variety of soil ecosystems, can ingest or transport microplastics; however, direct evidence for this has not been reported. To address this knowledge gap, we designed dietary exposure experiments under laboratory conditions, using the springtail species Folsomia candida. The springtails were administered polyethylene microplastics in three different sizes (2, 34, and 66 μm) via their food for a short period of time; we further observed the intestinal presence of microplastics via fluorescence microscopy to determine the maximum edible size. We evaluated the effects of ingested microplastics on springtails by quantifying their moving behavior. The results show that the edible size of microplastics is < 66.0 ± 10.9 μm, and microplastics smaller than this can significantly reduce the velocity and distance of springtail movement by 74% ± 38% compared with the control group. Based on this finding, the broader fate and toxicity of microplastics in soil environments can be estimated. Furthermore, the average velocity and distance of springtail movement decreases in response to microplastic ingestion, highlighting the negative effects of microplastics on soil organisms.
Show more [+] Less [-]Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.)
2020
Chang, Xulu | Wang, Xianfeng | Feng, Junchang | Su, Xi | Liang, Junping | Li, Hui | Zhang, Jianxin
Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-β was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.
Show more [+] Less [-]Evaluation of ketoprofen toxicity in two freshwater species: Effects on biochemical, physiological and population endpoints
2020
Alkimin, G.D. | Soares, A.M.V.M. | Barata, C. | Nunes, B.
Among the most used non-steroidal anti-inflammatory drugs (NSAIDs), ketoprofen (KTF) assumes an important position. Nevertheless, its ecotoxicological effects in non-target organisms are poorly characterized, despite its use and frequency of occurrence in aquatic matrices. Thus, the aim of this study was to evaluate the possible toxicological effects of KTF contamination, in two freshwater species, Lemna minor and Daphnia magna, by measuring biochemical, physiological and population parameters. To attain this objective, both species were exposed to KTF at the same concentrations (0, 0.24, 1.2, 6 and 30 μg/L). L. minor plants were exposed during 4 d to these levels of KTF, and the enzymatic activity (catalase (CAT), glutathione S-transferases (GSTs) and carbonic anhydrase (CA)), and pigments content (chlorophylls a, b and total and carotenoids) were analyzed to evaluate the toxicity of this drug. D. magna was acutely and chronically exposed to KTF, and enzymatic activities (CAT, GSTs and cyclooxygenase (COX)), the feeding rates, and reproduction traits were assessed. In L.minor, KTF provoked alterations in all enzyme activities, however, it was not capable of causing any alteration in any pigment levels. On the other hand, KTF also provoked alterations in all enzymatic activities in D. magna, but did not affect feeding rates and life-history parameters. In conclusion, exposure to KTF, provoked biochemical alterations in both species. However, these alterations were not reflected into deleterious effects on physiological and populational traits of L. minor and D. magna.
Show more [+] Less [-]Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia
2020
Singh, Atinderpal | Chou, Charles C.-K. | Chang, Shih-Yu | Chang, Shuenn-Chin | Lin, Neng-Huei | Chuang, Ming-Tung | Pani, Shantanu Kumar | Chi, Kai Hsien | Huang, Chiu-Hua | Lee, Chung-Te
This study examined the long-term trends in chemical components in PM₂.₅ (particulate matter with aerodynamic diameter ≤2.5 μm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003–2018. High ambient concentrations of PM₂.₅ and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (−0.67% yr⁻¹; p = 0.01), elemental carbon (−0.48% yr⁻¹; p = 0.18), and non–sea-salt (nss) K⁺ (−0.71% yr⁻¹; p = 0.04) during 2003–2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (−0.26% yr⁻¹; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO₃⁻ displayed an increasing trend (0.71% yr⁻¹; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (−1.04% yr⁻¹; p = 0.0001) during 2006–2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K⁺) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM₂.₅ chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.
Show more [+] Less [-]