Refine search
Results 331-340 of 557
Carbon Emissions from Energy Use in India: Decomposition Analysis Full text
2023
Sebak Kumar Jana and Wietze Lise
To become the fastest-growing large economy in the world, India has set a target growth rate of 9%, reaching an economy of $5 trillion by 2024-25. It is an immense challenge to meet the growth target and keep the CO2 emissions under control. The present paper aims to discover the determinants for explaining CO2 emissions in India by conducting a complete decomposition analysis, where the residuals are fully distributed to the determinants for the country from 1990-2018. The analysis reveals that the biggest contributor to the rise in CO2 emissions in India is the expansion of the economy (scale effect). The intensity of CO2 and the change in the composition of the economy, which nearly move in tandem, also contribute to the rise in CO2 emissions, although more slowly. A declining energy intensity of the Indian economy is responsible for a considerable reduction in CO2 emissions. As a typical result for an upcoming economy, this paper did not find evidence for an environmental Kuznets curve. This implies that continued economic growth will lead to increased CO2 emissions.
Show more [+] Less [-]Evaluation of Cr(VI) Reducing Capability of Bacillus licheniformis DAS1 Using a Multifactor Experimental Approach Full text
2023
Md. Saduzzaman, Kumari Mini, Shardendu Shardendu and S. Rehan Ahmad
The current study is about detoxifying soil and water contaminated with toxic Cr(VI). To ensure that DAS1 could develop as well as possible, the pH was changed between 4 and 10. DAS1 showed its highest growth at pH 8, and at the same pH, it had an 85% potential to remediate by converting Cr(VI) to Cr(III). Immobilized bacteria increased the reduction of Cr(VI) to Cr(III) from the culture medium to 90.4%. The impact of glucose concentrations between 0.5 and 2.5 g.L-1 was examined. The greatest development was seen at pH 8 and 2 g.L-1 glucose concentration. The remediation potential was improved by up to 96% when the growing medium contained 200 mg.L-1 Cr(VI). The value of ks (0.434 g.L-1) demonstrated the substrate’s affinity for bacteria in accordance with the Monod equation, while μ max (0.090 h) demonstrated that DAS1 required 11.11 h for maximal growth. The multifactor experimental design was used to analyze mixed cultures of DAS1 and DAS2 in a 1:1 ratio, and it was determined that the X3Y2Z1 experiment design was best for completely removing Cr(VI) from the growing medium. By making pores using Na2EDTA, it was determined that the cell membrane’s impermeability did not cause Cr(VI) resistance in DAS1. The delayed lag phase indicated that the enzyme activity was inductive rather than constitutive.
Show more [+] Less [-]State-of-the-art Overview of Biological Treatment of Polluted Water from Rice Mills and Imminent Technologies with Green Energy Retrieval Full text
2023
R. K. Singh and S. Bajpai
Rice milling involves shelling and polishing paddy grains to produce rice- both raw and parboiled. Parboiled rice production requires a massive quantity of freshwater for soaking, which, in turn, generates a large amount of wastewater. If this wastewater is not properly ameliorated, it can cause tremendous troubles of surface water pollution, land pollution, and, ultimately, groundwater pollution. Therefore, proper treatment of polluted water from rice mills (PWRM) as per the effluent discharge norms is necessary to protect the surface and subsurface water resources for sustainable development. There are two methods for remediating rice mill wastewater- physicochemical and biological. The biological methods produce comparatively less sludge and are cost-effective. Moreover, these processes are capable of retrieving green energy in the form of biomethane, biohydrogen, and bioelectricity to augment bio-fuel production, aiming to meet the ever-increasing fuel demands caused by rapid industrialization, motorization, and urbanization. The focus on green energy production is gaining momentum day by day due to the adverse effects of conventional energy derived from fossil fuel combustion in terms of enhanced Air Pollution Index (API) in the ambient atmosphere. In this paper, anaerobic biodegradation, phytoremediation, phyco-remediation, and microbial fuel cell techniques adopted by various researchers for remediating the polluted water from rice mills have been well addressed and critically discussed. The pros and cons of these biological methods have been well addressed to assess the socio-technoeconomic feasibility of each method.
Show more [+] Less [-]Quantification of Methane Emissions Rate Using Landgem Model and Estimating the Hydrogen Production Potential from Municipal Solid Waste Landfill Site Full text
2023
C. Ramprasad, A. Anandhu and A. Abarna
In India, solid waste is deposited mostly in uncontrolled open landfills without proper segregation and handling methods. Organic wastes dumped in a landfill undergo anaerobic decomposition and emit landfill gases like methane and carbon dioxide. Landfill gases are a significant contributor to greenhouse gases and greatly impact climate change. In the interim, reducing gas emissions and controlling and recycling such gasses is important from environmental hygienic, and global perspectives. Landfill gas has tremendous potential to convert as a source of alternative fuel. The present study estimates the CH4 (Methane) and CO2 (Carbon dioxide) emissions and quantifies the renewable energy available and hydrogen production potential using the LandGEM 3.02 empirical models for the Kanuru, Vijayawada landfill. It was observed that methane emission peaked in 2042 with an emission rate according to the model was 2.51E+08 Metric tons CO2 equivalents. The gas-recovery system is an essential component in landfills for extracting energy with 75-80% efficiency; the generation rate of greenhouse gases will reduce to around 1.78E06 Mg of CO2 eq. The predicted methane emissions vary from 1.33E6-9.22E6 cu.m per year for the period of 2010-2042. It was also estimated that annual energy production from LFG emissions was from 1.8-130 GWh per year, and hydrogen production potential was 0.6-43.3 Gg per year. The study concludes that projected scientific data will assist policymakers in creating sustainable MSW management by bridging the gap between sustainable renewable energy production and protecting the environment. The basic objectives of the study include the quantification of landfill gas production using the LandGEM model for Vijayawada, assessing the electricity generation potential of the landfill methane gas emitted, methane and carbon dioxide recovery from landfills with energy conversion could reduce GHG emissions, and estimation of hydrogen generation potential from the landfill methane emissions.
Show more [+] Less [-]Assessment of Water Quality During 2018-2022 in the Vam Co River Basin, Vietnam Full text
2023
N. T. Phong, P. T. Vinh, N. D. Luan, P. H. Dung, A. H. Tanim, A. S. Gagnon, W. Lohpaisankrit, P. T. Hoa, P. N. Truong and N. D. Vuong
Water pollution in the Vam Co River basin is becoming more complicated due to untreated wastewater being directly discharged into rivers and canals from agricultural, industrial, and domestic activities. To assess the water quality in this area, this study conducted monitoring at ten sampling locations (S1-S10) from 2018 to 2022, calculated the Water Quality Index (WQI) for each parameter, and simulated water quality in 2022 using the 1D- MIKE 11 model developed by DHI with two main modules including HD and AD. The findings showed that most parameters did not surpass the allowable limits per QCVN 08-MT:2015/BTNMT on Vietnam National Technical Regulation on Surface Water Quality. However, organic and microbial pollution led to certain parameters, such as BOD5, COD, and Coliform, exceeding the limits. The lowest water quality was recorded in Long An province, especially at sampling locations S3, S4, and S6, with the average WQI for nine water quality parameters from February to July 2022 being 58.4, 67.8, and 21.1, respectively. Additionally, the simulation outcomes of the MIKE 11 model salinity, BOD5, DO, and NH4 aligned with the real measurements taken. It has been observed that the southern area of the Vam Co River Basin possesses poorer water quality than the northern part, with Long An province located downstream of the Vam Co River basin being the primary source of pollution. The development of this hydraulic model signifies a crucial milestone in comprehending and regulating the effects of pollution in monitoring and managing water management systems, controlling saline intrusion, and ensuring water supply for agricultural production and daily use in the Vam Co River basin.
Show more [+] Less [-]Carbon Storage Potential of Soil in Diverse Terrestrial Ecosystems Full text
2023
Shiwani Sharma, Pankaj Kumar Jain and Prama Esther Soloman
Soil is one of the largest carbon reservoirs sequestering more carbon than vegetation and atmosphere. Due to the enormous potential of soil to sequester atmospheric CO2, it becomes a feasible option to alleviate the current and impending effects of changing climate. Soil is a vulnerable resource globally because it is highly susceptible to global environmental problems such as land degradation, biodiversity loss, and climate change. Therefore, protecting and monitoring worldwide soil carbon pools is a complicated challenge. Soil organic carbon (SOC) is a vital factor affecting soil health since it is a major component of SOM and contributes to food production. This review attempts to summarize the information on carbon sequestration, storage, and carbon pools in the major terrestrial ecosystems and underpin soil carbon responses under climate change and mitigation strategies. Topography, pedogenic, and climatic factors mainly affect carbon input and stabilization. Humid conditions and low temperature favor high soil organic carbon content. Whereas warmer and drier regions have low SOC stocks. Tropical peatlands and mangrove ecosystems have the highest SOC stock. The soil of drylands stores 95% of the global Soil Inorganic Carbon (SIC) stock. Grasslands include rangelands, shrublands, pasturelands, and croplands. They hold about 1/5th of the world’s total soil carbon stocks.
Show more [+] Less [-]Postnatal Exposure to A Low Dose of Imidacloprid: Oxidative Stress in Brain Without Affecting Learning and Behavior in Swiss Albino Mice Full text
2023
A. Sharma, S. Gupta and M. Kaur
The neurotoxic effects of exposure to low levels of the pesticide imidacloprid (IMI) and the effect of curcumin are of current interest when exposure occurs during early development. Male weanlings of Swiss albino mice (21 days old) were given 1 mg.kg-1 body weight (1/130 of LD50 and 2 mg.kg-1 body weight (1/65 of LD50) of imidacloprid and Curcumin (100 mg/kg body wt.) by oral gavage from postnatal day 21 to postnatal day 60. Young adult offspring were studied for behavioral parameters and learning ability using open field and Morris water maze. After completing the behavioral test, brains were processed for acetylcholine esterase activity and antioxidant enzyme estimation. The level of lipid peroxidation and activity of catalase, superoxide dismutase, and glutathione were assayed. In the present study, parameters such as locomotor activities and cognitive skills were not affected compared to lower doses of imidacloprid in the open field and Morris water test. However, activities and levels of antioxidant enzymes such as catalase and lipid peroxidation were found to be altered. In contrast, superoxide dismutase, acetylcholine esterase activity, and glutathione remained unchanged compared to the control. This suggests that subchronic exposure to low doses of IMI can lead to significant alterations in the enzymes of antioxidant protective systems such as catalase and lipid peroxidation. Co-treatment with curcumin was able to restore the activities of the affected enzymes in comparison with the control.
Show more [+] Less [-]Extended Producer Responsibility and Enforcement of Single-Use Plastic Ban in Pune City of India Full text
2023
M.Z.M. Nomani, Md. Mostak Alfarhad, Faizan Mustafa and Merwais Niazy
India has experienced tremendous production, use, and discarding of plastic waste. The municipal and solid wastes proliferation of municipal waste, especially plastic waste, paved the way for the regulatory framework to implement the plastic ban in 18 states and Union Territories of India. In contrast, they have implemented a partial ban on plastic bags respectively. It addressed the phasing out of multi-layered plastics (MLP) and incorporated Extended Producer Responsibility (EPR) within the circular economy of plastic waste generation and recycling. It is generally believed that the plastic ban in India has feeble administrative support and effective implementation. Therefore, the government has passed the Draft Plastic Rules, 2009; Plastic Waste (Management and Handling) Rules, 2011; Plastic Waste Management Rules, 2016 and Draft Plastic Waste Management Rules, 2021. It made vital changes in recycled plastic manufacture and usage at national and state levels. Since the net outcome of the failure is environmental degradation beyond reparable limits, the most vociferous articulation of the banning of the single-use came through the Notification on Plastic and Thermocol Products, 2018, by the Government of Maharashtra. Although the new legal framework carried high deterrent value, the implementation has been heavily flawed. The paper deals with the plastic laws and performance in the context of EPR in Pune city of India. It suggests viable recommendations and strategies from a multi-stakeholder perspective.
Show more [+] Less [-]Effectiveness of the River Chief System in China: A Study Based on Grassroots River Chief’s Behavior Full text
2023
Wenjie Yao and Ming Cheng
The River Chief System is an administrative model of water environment governance currently adopted in China. Under this system, the chief CPC and government leaders at various levels serve as “river chiefs” and are responsible for organizing and directing the management and protection of the rivers and lakes within their remit. This paper tries to reveal the actual effectiveness of the River Chief System based on the behaviors of grassroots river chiefs (GRCs). First-hand data about GRCs is obtained through a questionnaire survey. Whether the water environment governance target is achieved and the water quality change of the river sections in the charge of GRCs is quantitatively assessed It has been found that, except for implementing “one policy for one river” and making river patrols, the behaviors of GRCs have no positive effect on river pollution prevention and control, implying the ineffectiveness of the River Chief System. The framework design of the River Chief System should be optimized, and a system with professionals to support GRCs in performing their duties should be established. Moreover, the tendency to use environmental regulation as a mandatory policy tool should be weakened. These measures are of great practical significance to the implementation of the green development concept and the furthering of the River Chief System overall.
Show more [+] Less [-]Synthesis of Persea Americana Bio-Oil and Its Spectroscopic Characterization Studies Full text
2023
V. Hariram, Pavan Kumar Reddy, B. Gajalakshmi, S. K. Siraj Basha, A. Saravanan, S. K. Khamruddin and B. Ravikumar Reddy
The present investigation aims to evaluate the feasibility of using Persea americana (Avocado) biodiesel in compression ignition engines. Persea americana bio-oil was extracted through a soxhlet extraction process using n-hexane solvent after careful pre-processing of the feedstocks. Since the Free Fatty Acid content was 1.78% estimated through titration, single stage base-catalyzed transesterification technique was adopted using methanol and sodium hydroxide as catalysts in the molar ratio of 1:6. Gas Chromatography-Mass Spectrometry analysis revealed the presence of Oleic acid in major proportions. The Fourier transform Infra-Red analysis confirmed the presence of carbonyl group ester ions between 722.19 cm-1 and 1460 cm-1. The 13C NMR and 1H NMR studies supported the successful transformation of triglycerides into Fatty Acid Methyl Esters with distinct peaks at 3.369 ppm and 48.147 ppm, respectively.
Show more [+] Less [-]