Refine search
Results 3321-3330 of 6,535
Anaerobic digestion of spectinomycin mycelial residues pretreated by thermal hydrolysis: removal of spectinomycin and enhancement of biogas production
2020
Song, Siqi | Jiang, Mingye | Yao, Jie | Liu, Huiling | Dai, Xiaohu
Anaerobic digestion (AD) is an effective technology to dispose antibiotic mycelial residues, but biogas production is influenced by hydrolysis rates and antibiotic residue. Herein, the effects of thermal hydrolysis pretreatment for AD of spectinomycin mycelial residues (SMRs) were investigated. The results showed that the removal ratio of spectinomycin was increased while the temperature of pretreatment was escalating. Meanwhile, thermal hydrolysis facilitated the dissolution of organic matters. However, non-biodegradable substances measured by fluorescence excitation–emission matrix accumulated and thus had an adverse influence on biogas production. Based on batch assays, the optimal pretreatment temperature for SMRs was 120 °C. The removal of spectinomycin was benefit for biogas production (increasing by 7.6%), and the overall biogas production increased by 27.6% compared with 289.90 mL gVS⁻¹ of untreated SMRs. The microbial community analysis revealed that spectinomycin (265 mg L⁻¹) might influence bacteria in the early stage of AD (first 5 days), while redundancy analysis showed that spectinomycin had a non-significant influence on community succession over the 32 days of fermentation.
Show more [+] Less [-]Current research status of large river systems: a cross-continental comparison
2020
Su, Wan | Tao, Juan | Wang, Jun | Ding, Chengzhi
Rivers play an irreplaceable role in nature and human society but are the most vulnerable ecosystem in the world to multiple environmental stressors. However, the global-scale research status and the distribution patterns of major stressors in large rivers remain unclear. This study analysed research publications (12,807 documents from 1900 to 2019) related to six large rivers with continental representativeness to tackle these knowledge gaps. The results showed that the total outputs have grown rapidly over the study period, particularly since the 1990s. Consistent with the varied environmental characteristics and problems among the rivers, the research outputs and focuses demonstrated clear differences, which could further be attributed to geographical location, journal preferences and the economic strength of the country in which the river is located. Overall, climate change was the most frequently and widely considered environmental stressor in large rivers. Regardless of climate change, species diversity and hydropower development were widely addressed in the Amazon, Congo and Mekong river basins. Water pollution was the main stressor studied in the Rhine River and Mississippi River, while agricultural irrigation and drought were the most frequently addressed research subjects in the Murray-Darling River. This study provides a comprehensive understanding of the research status and stressor distribution in large global rivers, highlighting the relationship between river research and geographical regions, pointing out future research directions and providing management guidance for large rivers.
Show more [+] Less [-]Formaldehyde in Rainwater in Sakai City, Japan: Continuous Observation, Concentration, and Aqueous Photoproduction
2020
Formaldehyde (HCHO) is an important component in tropospheric chemistry, but the study of HCHO in rainwater is limited. This is the first report of continuous measurement of HCHO in rainwater. HCHO in rainwater was continuously measured using a modified chemiluminescence method at Sakai City, Osaka, Japan. The continuous measurement was conducted in the 2018 rainy season (Baiu) of Japan. A total of 20 rain events have been observed, and the averaged HCHO concentration of each rain event was 0.13–2.75 μM. The maximum concentration was 9.91 μM. Diurnal variation of HCHO in rainwater showed the distinctively high concentration in nighttime and no correlation with local ambient gaseous HCHO, implying another source such as aqueous photoproduction and transportation rather than scavenging. The photo-irradiation experiment revealed that photoproduction of HCHO is one of the important sources of HCHO in rainwater with the maximum production rate of 2.43 μM h⁻¹. Besides, the backward trajectory indicated that there could have a link with the air mass original location. Furthermore, microorganism activity can play a role as a sink of HCHO in rainwater that could consume HCHO with digestion rate up to 3.2 μM h⁻¹.
Show more [+] Less [-]Sediment distribution on the continental shelf in relation to stream inputs and contamination: hydrodynamic, chemical, mineralogical, and sedimentological characteristics (Ligurian Sea, Italy)
2020
River estuaries, continental shelf, and sediment contamination are closely linked from the point of view of sediment transport and diffusion that is governed by different factors such as sea waves and currents, river flows and floods, and sediment characteristics. Taking these factors into consideration, we have examined marine environmental and marine bottom sediments off the mouth of a stream to highlight the main ways of sediment and contaminant transport and diffusion on the continental shelf. For this purpose, we followed a multidisciplinary approach, studying circulation of water masses, hydrological characteristics of water column, distribution and main characteristics of sediment grain size, sediment mineralogical composition, and metal concentrations of bottom sediments. Our results allowed identifying the presence of preferential ways of sediment deposition and areas of sediment spread for the Entella Stream, as well as the origin of some metals.
Show more [+] Less [-]Synergistic approach using ultrafiltered xylano-pectinolytic enzymes for reducing bleaching chemical dose in manufacturing rice straw paper
2020
In this study, action of ultrafiltered xylano-pectinolytic enzymes from a bacterial strain has been evaluated for bleaching of rice straw soda-anthraquinone pulp. Maximum bio-bleaching effect and release of non-cellulosic impurities were noticed with xylano:pectinolytic enzymes dose of 6.0:2.1-IU/g pulp, treatment time of 180 min at 10% pulp consistency, pH 8.5, and temperature 55 °C. Microscopic images of bio-bleached rice straw pulp also confirmed the efficacy of ultrafiltered enzymes, as bleaching agent. This bio-bleaching treatment resulted in 15.38% and 32% reduction in kappa number and active chlorine dioxide dose, respectively, along with increase in various physical properties, burst index (12.50%), tear index (19.07%), breaking length (14.30%), double fold number (26.31%), Gurley porosity (45.32%) and viscosity (16.17%). This bio-bleaching approach not only improved the pulp quality but also reduced environmental pollution load by decreasing effluent parameters values of BOD and COD by 23.67% and 27.44%, respectively. This study indicates that use of ultrafiltered xylano-pectinolytic synergism for rice straw pulp bleaching will ultimately help in making the process eco-friendly, along with better quality pulp. This is the first report on use of ultrafiltered xylanase and pectinase, produced from a bacterial isolate, for bleaching of rice straw pulp.
Show more [+] Less [-]Compartmentation and effects of lead (Pb) in the collembolan, Folsomia candida
2020
The impact of soil lead (Pb) pollution on survival, growth, and reproduction of the collembolan, Folsomia candida, and Pb compartmentation in its gut and remaining body parts were studied by exposing animals to laboratory-spiked soil. The survival, growth, and reproduction of F. candida were significantly reduced by increasing soil Pb concentration. The LC₅₀ values of survival based on total and CaCl₂-extractable Pb concentration in soil were 2562 mg kg⁻¹ and 351 mg kg⁻¹, respectively. The EC₅₀ values of reproduction were 1244 mg kg⁻¹ and 48 mg kg⁻¹, respectively. The Pb concentration in whole body, gut, and remaining body parts was significantly increased with the increase of soil Pb concentration and followed an exponential increase when the soil Pb concentration was equal to or above a threshold (1000 mg kg⁻¹ for whole body and remaining body part, 500 mg kg⁻¹ for gut). Below this threshold, these relationships were linear. The Pb concentration in the gut was higher than whole body and remaining body part of F. candida, and the threshold of internal Pb concentration at which F. candida can compensate was in the range 7–13 mg Pb kg⁻¹ dry animal (corresponding to soil Pb concentration 500–1000 mg Pb kg⁻¹ dry soil). The results indicate that reproduction of F. candida was a more sensitive indicator of lead toxicity than survival and growth. Pb was mainly accumulated in the gut of F. candida. We discuss the internal Pb concentration as an indicator of adverse effects in the risk assessment of soil Pb pollution.
Show more [+] Less [-]Multi-model ensemble simulated non-point source pollution based on Bayesian model averaging method and model uncertainty analysis
2020
Watershed models are cost-effective and powerful tools for evaluating and controlling non-point source pollution (NPSP), while the reliability of watershed models in a management context depends largely on inherent uncertainties in model predictions. The objective of this study is to present the use of multi-model ensemble applied to streamflow, total nitrogen (TN), and total phosphorus (TP) simulation and quantify the uncertainty resulting from model structure. In this study, three watershed models, which have different structures in simulating NPSP, were selected to conduct watershed monthly streamflow, TN load, and TP load ensemble simulation and 90% credible intervals based on Bayesian model averaging (BMA) method. The result using the observed data of the Yixunhe watershed revealed that the coefficient of determination and Nash–Sutcliffe coefficient of the BMA model simulate streamflow, TN load, and TP load were better than that of the single model. The higher the efficiency of a single model is, the greater the weight during the BMA ensemble simulation is. The 90% credible interval of BMA has a high coverage of measured values in this study. This indicates that the BMA method can not only provide simulation with better precision through ensemble simulation but also provide quantitative evaluation of the model structure through interval, which could offer rich information of the NPSP simulation and management.
Show more [+] Less [-]Assessment of the Effects of Sediment-Associated Metals and Metalloids on Mangrove Macroinvertebrate Assemblages
2020
Roe, Rebecca A. L. | Trần, Thị Kim Anh | Schreider, Maria J. | MacFarlane, Geoff R.
Although much previous research effort has examined the impacts of metal contamination on macrobenthic assemblages in subtidal sediments, little attention has been directed at macroinvertebrate responses in intertidal mangrove habitats. Thus, in order to assess the unique responses of mangrove macroinvertebrate assemblages to sediment metal(loid) contamination, total, normalised and bioavailable metal(loid)s (Mn, Pb, Cr, Cd, As, Se, Co, Ni, Zn and Cu) were assessed within and between four mangrove locations in Lake Macquarie, NSW, Australia, and compared to resident macroinvertebrate assemblages over two sampling occasions. Mangrove biomass and physicochemical properties of sediment are known to influence macroinvertebrate assemblages, and as such, were also assessed to account for any potential confounding effect on macroinvertebrate assemblage composition. Significant differences in total and bioavailable metal(loid) contamination were found between and within locations and were consistent over time. Sediments at contaminated locations presented a high risk to biota with bioavailable concentrations of Pb, Cd, Zn found to exceed sediment quality guidelines and concentrations of Se capable of adverse impacts to biota. Macroinvertebrate assemblage composition varied with metal(loid) contamination loads present at study locations. Metal(loid) contamination was significantly correlated with macroinvertebrate assemblages over two sampling periods. Further analysis revealed that 71% of macroinvertebrate assemblage composition could best be explained by a combination of five variables namely, bioavailable Mn, Zn, and Se, number of mangrove seedlings and mean mangrove biomass. Rather than tolerant polychaetes dominating metal(loid)-contaminated sediments (as is found generally in subtidal sediments), polychaetes in intertidal mangroves appeared to be relatively sensitive to metal(loid) stress. Further, decapod crustaceans in the family, Varunidae, and gastropod molluscs, in the family, Amphibolidae, were found to be metal-sensitive taxa and may be employed in future studies as indicator taxa of sediment metal(loid)-related impacts in south-eastern Australian mangrove forests.
Show more [+] Less [-]Evaluation of azamethiphos and dimethoate degradation using chlorine dioxide during water treatment
2020
Pergal, Marija V. | Kodranov, Igor D. | Dojčinović, Biljana | Avdin, Viacheslav V. | Stanković, Dalibor M. | Petković, Branka B. | Manojlović, Dragan D.
Chlorine dioxide (ClO₂) degradation of the organophosphorus pesticides azamethiphos (AZA) and dimethoate (DM) (10 mg/L) in deionized water and in Sava River water was investigated for the first time. Pesticide degradation was studied in terms of ClO₂ level (5 and 10 mg/L), degradation duration (0.5, 1, 2, 3, 6, and 24 h), pH (3.00, 7.00, and 9.00), and under light/dark conditions in deionized water. Degradation was monitored using high-performance liquid chromatography. Gas chromatography coupled with triple quadrupole mass detector was used to identify degradation products of pesticides. Total organic carbon was measured to determine the extent of mineralization after pesticide degradation. Real river water was used under recommended conditions to study the influence of organic matter on pesticide degradation. High degradation efficiency (88–100% for AZA and 85–98% for DM) was achieved in deionized water under various conditions, proving the flexibility of ClO₂ degradation for the examined organophosphorus pesticides. In Sava River water, however, extended treatment duration achieved lower degradation efficiency, so ClO₂ oxidized both the pesticides and dissolved organic matter in parallel. After degradation, AZA produced four identified products (6-chlorooxazolo[4,5-b]pyridin-2(3H)-one; O,O,S-trimethyl phosphorothioate; 6-chloro-3-(hydroxymethyl)oxazolo[4,5-b]pyridin-2(3H)-one; O,O-dimethyl S-hydrogen phosphorothioate) and DM produced three (O,O-dimethyl S-(2-(methylamino)-2-oxoethyl) phosphorothioate; e.g., omethoate; S-(2-(methylamino)-2-oxoethyl) O,O-dihydrogen phosphorothioate; O,O,S-trimethyl phosphorodithioate). Simple pesticide degradation mechanisms were deduced. Daphnia magna toxicity tests showed degradation products were less toxic than parent compounds. These results contribute to our understanding of the multiple influences that organophosphorus pesticides and their degradation products have on environmental ecosystems and to improving pesticide removal processes from water.
Show more [+] Less [-]Leaching Potential of Multi-metal-Contaminated Soil in Chelate-Aided Remediation
2020
Park, Soyoung | Sung, Kijune
Chelates, used to increase the uptake of heavy metals in phytoremediation, can also increase the mobility of metals. If plants fail to uptake or stabilize all the mobilized metals, then subsurface soil or groundwater can be contaminated. Therefore, the type and concentration of chelate used and proper site management are important for chelate-aided phytoremediation. In this study, we evaluated potential metal leaching from the soil after applying three different chelates. The readily soluble and exchangeable metal (RSEM) and plant-available metal (PAM) of Pb, Zn, Cu, Cd, and Ni in soil amended with ethylene diamine tetra acetic acid (EDTA), ethylene diamine disuccinate (EDDS), or humic acid (HA) were analyzed, and the potential leaching factor (PLF) of the heavy metals was estimated. Results showed that the effects of chelates and their concentration on RSEM and PAM of heavy metal in soil were different. The addition of EDTA increased the CRSEM and CPAM of all heavy metals, although its effects varied with the concentration added. EDDS application increased CRSEM and CPAM of Cu, Ni, and Zn, but EDDS was more effective than EDTA for Cu and Ni. HA did not show a significant impact due to the short duration of the experiment. In most cases with chelates effects, the increase of RSEM was greater than PAM, and the potential of metal leaching increased. Therefore, application of chelates for remediation of metal-contaminated soil should consider not only the capacity of metal uptake in plants but also the potential metal leaching from the system. Additionally, this process should be accompanied by proper water management to minimize leachate in chelate-aided phytoremediation applications.
Show more [+] Less [-]