Refine search
Results 3441-3450 of 4,043
Mobilization of trace metals and PCBs from contaminated marine sediments of the Mar Piccolo in Taranto during simulated resuspension experiment Full text
2016
Di Leo, Antonella | Annicchiarico, Cristina | Cardellicchio, Nicola | Cibic, Tamara | Comici, Cinzia | Giandomenico, Santina | Spada, Lucia
The effects of sediment resuspension on the fate of metals and polychlorinated biphenyls (PCBs) were studied by using a short-term small reactor. Sediments and water were collected nearby the most contaminated site of the Mar Piccolo of Taranto. Contaminant partitioning was calculated between the solid and water phases and, in the latter, between the dissolved and particulate phases and related to physical–chemical variables. Before and after resuspension, metal concentrations in sediments did not vary remarkably. Except for Cd, all the analyzed metals exceeded by many folds both threshold effect level (TEL) and probable effect level (PEL) SQGs. Igeo index values for Hg designated the sediment quality as extremely polluted for Pb, Cu and moderately polluted for Zn. In the dissolved phase, Mn increased of about 70 times, Fe of about 7 times and Hg and Zn of 4 and 3 times, respectively. PCBs in sediments before and after resuspension did not vary for more than 15 %. PCB concentrations exceeded for more than ten times PEL values. After resuspension, PCBs increased from 0.82 to 4.82 ng L⁻¹ in the dissolved phase and from 0.22 to 202.21 ng L⁻¹ in the particulate one. The dissolved phase was initially enriched in light- to mid-weight compounds. After resuspension, the particulate phase was enriched in heavier congeners. In particular, hexachlorobiphenyl-153, 149 and 138 together with heptachlorobiphenyl-180 and 187 accounted for 57 % of total PCBs. The dissolved organic carbon (DOC) that increased from 1.31 to 8.55 mg L⁻¹ likely influenced the fate of metals and PCBs in the dissolved and particulate phases. Despite that the residence time of the contaminated resuspended sediments in the water column is limited, they are still highly toxic for the pelagic trophic web.
Show more [+] Less [-]The Mar Piccolo of Taranto: an interesting marine ecosystem for the environmental problems studies Full text
2016
Cardellicchio, Nicola | Annicchiarico, Cristina | Di Leo, Antonella | Giandomenico, Santina | Spada, Lucia
The National Project RITMARE (la Ricerca ITaliana per il MARE—Italian Research for the sea) started from 1 January 2012. It is one of the national research programs funded by the Italian Ministry of University and Research. RITMARE is coordinated by the National Research Council (CNR) and involves an integrated effort of most of the scientific community working on marine and maritime issues. Within the project, different marine study areas of strategic importance for the Mediterranean have been identified: Among these, the coastal area of Taranto (Ionian Sea, Southern Italy) was chosen for its different industry settlements and the relative impact on the marine environment. In particular, the research has been concentrated on the Mar Piccolo of Taranto, a complex marine ecosystem model important in terms of ecological, social, and economic activities for the presence also of extensive mussel farms. The site has been selected also because the Mar Piccolo area is a characteristic “on field” laboratory suitable to investigate release and diffusion mechanisms of contaminants, evaluate chemical–ecological risks towards the marine ecosystem and human health, and suggest and test potential remediation strategies for contaminated sediments. In this context, within the project RITMARE, a task force of researchers has contributed to elaboration a functioning conceptual model with a multidisciplinary approach useful to identify anthropogenic forcings, its impacts, and solutions of environmental remediation. This paper describes in brief some of the environmental issues related to the Mar Piccolo basin.
Show more [+] Less [-]Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China Full text
2016
Fan, Zhou | Han, Rui-ming | Ma, Jie | Wang, Guo-xiang
nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.
Show more [+] Less [-]Antimicrobial susceptibility of Vibrio alginolyticus isolated from oyster in Korea Full text
2016
Kang, Chang-Ho | Shin, Yujin | Jang, SeokCheol | Jung, Yeojung | So, Jae-Seong
Pathogenic Vibrio alginolyticus, a cause of severe infection in shellfish, as well as in humans, has been found at high frequency around all coastal areas of Korea. The aim of this study was to determine the occurrence of V. alginolyticus, to identify the strains isolated from oysters in West Sea, and to investigate their antimicrobial resistance profiles. Biochemical analyses of the 90 initially recovered presumptive V. alginolyticus colonies indicated that 16 isolates were V. alginolyticus. PCR analysis to detect the presence of the gyrB gene confirmed that 15 (93.8 %) of the 16 isolates were V. alginolyticus. These 15 isolates had the following profiles of resistance against 16 antibiotics: all isolates were resistant to ampicillin and vancomycin, and 26.7 % of the isolates exhibited resistance to cephalothin. A large number of isolates showed intermediate resistance to erythromycin (100 %) and rifampin (73.3 %). Five (33.3 %) of the V. alginolyticus isolates demonstrated multiple resistance to at least three antimicrobials.
Show more [+] Less [-]Differential impact of Limnoperna fortunei-herbicide interaction between Roundup Max® and glyphosate on freshwater microscopic communities Full text
2016
Gattás, F. | Vinocur, A. | Graziano, M. | dos Santos Afonso, M. | Pizarro, H. | Cataldo, D.
Multiple anthropogenic stressors act simultaneously on the environment, with consequences different from those caused by single-stressor exposure. We investigated how the combination of the invasive mussel Limnoperna fortunei and a widely applied herbicide, Roundup Max®, affected freshwater microscopic communities and water quality. Further, we compared these results with those induced by the combination of the mussel and technical-grade glyphosate. We carried out a 34-day experiment in outdoor mesocosms, applying the following six treatments: 6 mg L⁻¹ of technical-grade glyphosate (G), the equivalent concentration of glyphosate in Roundup Max® (R), 100 mussels (M), the combination of mussels and herbicide either in the technical-grade or formulated form (MG and MR, respectively), and control (C). Herbicides significantly increased total phosphorus in water; R and MR showed greater initial total nitrogen and ammonium. R increased picoplankton abundance and caused an eightfold increase in phytoplankton, with high turbidity values; G had a lower effect on these variables. Herbicide-mussel combination induced an accelerated dissipation of glyphosate in water (MG 6.36 ± 0.83 mg G g DW⁻¹ day⁻¹ and MR 5.16 ± 1.26 mg G g DW⁻¹ day⁻¹). A synergistic effect on ammonium was observed in MR but not in MG. MR and MG had an antagonistic effect on phytoplankton, which showed a drastic reduction due to grazing, as revealed by M. We provide evidence of differential effects of Roundup Max® and technical-grade glyphosate over water quality and microscopic communities, and in combination with mussels. However, in the combination of mussels and herbicides, mussels seem to play a leading role. In the presence of L. fortunei, the effects of higher nutrient availability provided by herbicides addition were counteracted by the filtration activity of mussels, which released nutrients, grazed on picoplankton and phytoplankton, and boosted the development of other primary producers, periphyton and metaphyton.
Show more [+] Less [-]Reduced sulfentrazone phytotoxicity through increased adsorption and anionic species in biochar-amended soils Full text
2016
Liu, Kailin | Yu, Bingqi | Luo, Kun | Liu, Xiangying | Bai, Lianyang
Burning straw in the field is a common agricultural practice. The effects of adding biochar derived from rice straw to soils on the phytotoxicity of sulfentrazone to Oryza sativa L. were observed. Overall, when 1 % biochar was added to three different soils, the phytotoxicity of sulfentrazone to O. sativa L. decreased, and the concentration that inhibits growth by 50 % (IC50) increased by 1.4 to 7.6 times. To illuminate the influencing mechanisms, the changes in sulfentrazone adsorption to the soil, the soil pH, and the bioavailable sulfentrazone extracted from the soil solution using hollow fiber-based liquid-phase microextraction were studied. The Freundlich constant (K f) of sulfentrazone to the soil increased 1.5 to 25 times relative to the K f in the three unamended soils, and the soil pH increased by 0.36 to 1.36 units resulted in a fraction of dissociated sulfentrazone increased by 10.2–17.4 %. In addition, the average concentrations of sulfentrazone in the three unamended soil solutions were 1.3–6.1 times relative to those in the three biochar-amended soil solutions. These results suggest that the sulfentrazone adsorption and soil pH increased when soils were amended with biochar, which decreased the bioavailable concentrations and reduced its phytotoxicity to O. sativa L.
Show more [+] Less [-]Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study Full text
2016
Jefimova, Jekaterina | Adamson, Jasper | Reinik, Janek | Irha, Natalya
The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.
Show more [+] Less [-]Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters Full text
2016
Ríos, Francisco | Fernández-Arteaga, Alejandro | Lechuga, Manuela | Jurado, Encarnación | Fernández-Serrano, Mercedes
This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L⁻¹, are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.
Show more [+] Less [-]Evaluation of calcium and lead interaction, in addition to their impact on thyroid functions in hyper and hypothyroid patients Full text
2016
Memon, Nusrat Shahab | Kazi, Tasneem Gul | Afridi, Hassan Imran | Baig, Jameel Ahmed | Arain, Sadaf Sadia | Sahito, Oan Muhammad | Baloch, Shahnawaz | Waris, Muhammad
There is compelling evidence in support of interaction between calcium (Ca) and lead (Pb) in thyroid disorders. The aim of present study was to compare the level of Ca and Pb with thyroid hormones such as thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxin (FT4) in serum samples of hyperthyroid (HPRT) and hypothyroid (HPOT) patients of both genders. For comparative purpose, age-matched (25–50 years) subjects having no thyroid disorders were selected as referents/controls. The serum samples were acid-digested prior to analysis by atomic absorption spectrometry. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data indicates that the mean values of Ca in serum samples of HPRT patients were significantly higher than those of referent subjects (p < 0.01), while reverse pattern was observed in the case of HPOT patients. The level of Pb was higher in the serum samples of both types of thyroid patients, but difference was significant in case of HPOT patients as compare to referent subjects (p < 0.01). A negative correlation was observed between serum Ca levels and TSH of HPRT patients (−r = 0.37–0.39, p < 0.01), while FT3 and FT4 have positive correlation (r = 0.49–0.52 and r = 0.46–0.47), p values <0.01. The Pb in serum had positive correlation with TSH (r = 0.48–0.51, p < 0.005), while negative correlation was observed for FT3 and FT4 (−r = 0.55–0.56, 0.5–0.54, p < 0.05) in HPRT patients. On the other hand, a reverse pattern was observed, for correlation of Ca and Pb with thyroid functions in HPOT patients.
Show more [+] Less [-]Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa Full text
2016
Chen, Lei | Gin, Karina Y. H. | He, Yiliang
Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L⁻¹) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.
Show more [+] Less [-]