Refine search
Results 351-360 of 63,319
Do Technological Innovation And Renewable Energy Consumption in Japan Important For Consumption-Based Carbon Emissions? Full text
2021
Adebayo, Tomiwa Sunday | Adesola, Ibrahim | Oyebanji, Modupe | Osemeahon, Oseyenbhin Sunday
With growing global warming issues, the association between technological innovation and environmental pollution has created significant debate in recent years. This paper examines the long-run and causal impact of technological innovation, economic growth, and renewable energy on consumption-based carbon emissions in Japan. The study utilized quarterly data spanning between 1990 and 2015. The study utilized recent econometrics techniques such as Maki co-integration, ARDL bunds test, FMOLS, DOLS, and frequency domain causality techniques. To the author's understanding, no prior studies have been conducted in Japan using consumption-based carbon emissions as a proxy of environmental degradation. Thus, this empirical analysis contributes to the literature. The findings from the ARDL bounds and Maki co-integration tests revealed evidence of co-integration among the series. The results of FMOLS and DOLS reveal that both renewable energy and technological innovation improve the environmental quality, while economic growth harms the quality of the environment. The results of the frequency-domain causality technique reveal that technological innovation, renewable energy, and economic growth can significantly predict consumption-based carbon emissions in Japan. Based on these outcomes, we suggested that Japan's government should be careful when formulating policies that trigger growth, which will have a detrimental impact on the environmental quality. Our empirical outcome also revealed that any policy that encourages renewable energy should be encouraged since it enhances environmental quality.
Show more [+] Less [-]Effects of Prenatal Exposure to Urea Fertilizer on the Angiogenesis, Body Growth, and Liver Structure of Duck (Anas platyrhynchos) Embryos Full text
2021
Rosal, Jashin | Solania, Chennie | Agan, Mariel Queenie | Mondea, Donald | Villa, Bruce | Sanchez, Daniljun
The agricultural sector uses fertilizers such as urea to add more nutrients to the soil needed for plant growth. Although it is cost-effective in crop production, indiscriminate use of nitrate-based fertilizer may result in behavioural, morphological, and physiological alterations on non-target organisms. This study determined the angiogenesis activity in the chorioallantoic membrane of urea-exposed duck embryos. It also investigated the weight, morphometries, and liver histopathology to gather more information on urea fertilizer's toxicity. It was observed that urea promoted angiogenesis in the CAM of duck embryos, especially at higher concentrations (P<0.05). Embryos treated with urea resulted in an alteration of the head-beak length (P<0.05). However, weight, crown-rump length, forelimb length, and hind limb length were not affected. The developing liver of urea-treated embryos showed distortion of the central vein shape and had larger sinusoidal spaces. The presence of Kupffer cells and lipid droplets were observed in the treated section. Congestion of blood cells, haemorrhage, and necrosis of hepatocytes were also observed in the tissue suggesting the extent of damage caused by the fertilizer. The findings of this study showed multiple developmental effects of urea on duck embryos. Further investigations are needed to shed more light on the toxicity of urea fertilizer on vertebrates.
Show more [+] Less [-]Carcinogenic and Non-carcinogenic Health Risk Assessment of Heavy Metals in Ground Drinking Water Wells of Bandar Abbas Full text
2021
Farimani Raad, Hamidreza | Pardakhti, Alireza | Kalarestaghi, Hamidreza
This research evaluates the carcinogenic and non-carcinogenic risks from cadmium, lead, and zinc in Bandar Abbas groundwater sources. The samples from 25 wells were analyzed for cadmium, lead and zinc. Total lifetime cancer risk and non-cancer risk assessment from exposure to these pollutants in drinking water (ingestion, inhalation and skin routes) were conducted for people living in these villages. In these regions most of the drinking water supplied, are from these wells which shows the importance of analyzing the quality of them in order to prevent diseases and cancer risks. The highest risk from cadmium seems to be in village Dehno Paein and also this amount for lead occurs in Tifakan Tal-e Gerdu. The highest hazard index (HI) based on human health risk assessment (HHRA) model for cadmium, lead, and zinc through oral, inhalation and dermal pathways were computed as 0.005, 1.63 and 0.043 which are in Dehno Paein, Tifakan Tal-e Gerdu and Faryab. Results show that lead can lead to more cancer cases in these villages that cadmium. The total expected cancer cases from exposure to cadmium in different routes are lower than lead.
Show more [+] Less [-]Power Recovery and Sulfate Removal from Rubber Wastewater with the Novel Model Multi-Electrode Microbial Fuel Cell Full text
2021
Chaijak, Pimprapa | Sato, Chikashi
Microbial fuel cell (MFC) is a well-known technology that can convert contaminated substrate in the wastewater to electrical power. To gain more power output, the multi-electrode MFC was developed owing to it has a high surface area for anaerobic microbe adhesion. Here we show the multi-anode was made from the bamboo charcoal was combined with laccase-based cathode in the ceramic separator MFC for the rubber wastewater treatment and enhancing the power generation. The untreated rubber wastewater with initial COD and contaminated sulfate concentration of 3,500 mg/L and 1,100 mg/L was used as a anolyte. The 843.33±5.77 mA/m3 of CD, the 711.23±9.76 mW/m3 of PD were generated. Moreover, this system reached 83.07±3.01% of sulfate removal when it was operated at 30 °C for 12 hr. This study recommended that multi-anode with laccase based MFC can more successfully produce energy from untreated rubber wastewater. it will be greater in terms of electricity generation and sulfate removal.
Show more [+] Less [-]Concentrations and Sources of Aliphatic and Aromatic Hydrocarbons in Babolsar Coastal Sediments in the Caspian Sea Full text
2021
Taghavi, Nasim | Hadjizadeh Zaker, Nasser | Biglarbeigi, Pardis
This paper presents concentrations and sources of Aliphatic and Aromatic Hydrocarbons in the sediments from Babolsar coastal area and the inlet of Babolrood River in the southern side of the Caspian Sea. The concentration of hydrocarbons in 13 sediment samples from the study area were measured by gas chromatography (GC). Total Petroleum Hydrocarbon (TPH) concentrations in sediment samples in the coastal area ranged from 115 to 201 μg/g. In the inlet samples, TPH concentrations were close to each other and ranged from 294 to 367 μg/g. The TPH results showed moderate level of oil pollution in the study area. Total Polycyclic Aromatic Hydrocarbons (ΣPAHs) concentrations in sediment samples inside the inlet ranged from 498 to 702 ng/g, indicating moderate level of pollution. Concentrations of ΣPAHs in sediment samples in the coastal area ranged from 341 to 1703 ng/g, indicating moderate to less than significant level of pollution. Developed indices for pollutant origins showed that hydrocarbons in all sediment samples collected in the study area had petrogenic origin. The results also showed the Babolrood River as the main source of oil pollution in the sediments in the study area.
Show more [+] Less [-]Effect of Re-burn Fuel Stream Location on NO Reduction in a Model Pulverized Coal Combustor Full text
2021
Sahu, Ajay Kumar | Ghose, Prakash
I is missing this work, a computational simulation has been performed to investigate the positional effect of reburn fuel injection on NO-reburn. Reburn fuel methane is injected across the coal injection plane at different axial positions of the combustor. Various major NO source mechanisms are considered for NO formation and NO reburn mechanism is used for NO depletion. Temperature profile, species concentration are also investigated, as both NO formation and depletion rate depends on these parameters. It has been observed that, a high temperature flame exists near coal inlet, when the reburn fuel injection plane is closer to coal inlet. On the other hand, the temperature of the flame near the coal inlet decreases when the reburn fuel injection position is far away from coal inlet region. Moreover, NO sources are observed near coal inlet region, when the reburn fuel is injected closer to coal inlet. On the other hand, only Fuel-NO is observed near coal inlet, when the reburn fuel is injected away from the coal inlet. Maximum NO reduction efficiency is observed at outlet plane when reburn fuel is injected closer to inlet, whereas a relatively lower NO reduction efficiency has been observed at outlet plane when reburn fuel is injected far away from coal inlet region.
Show more [+] Less [-]Efficient Removal of Toxic Textile Dye using Petiole Part (Stem) of Nymphaea alba Full text
2021
Rahman, Abul Kalam Md. Lutfor | Sarker, Aparna | Ahmed, Nafees | Mustofa, Marufa | Awal, Abdul
The removal of toxic textile dye, Congo red (CR) an azo based textile dye, was investigated from aqueous solution by low cost, eco-friendly available adsorbents such as petiole part (stem) of water lily (Nymphaea alba) under various experimental conditions.Batch experiment was carried out at varying pH, dye concentration, contact time and particle size as well as doses of the adsorbent. CR was analyzed by a UV-visible spectrophotometer. Optimum pH was found at pH 2 and 6. A relative study was done using sodium chlorite and formaldehyde treated water lily. The maximum removal of CR was obtained 94.68% using untreated water lily (UT-WL). Adsorption increased with the increase of the particle size of the adsorbent. The highest removal of CR was found at a lower dose (62.5 g/g) of the adsorbent. The Freundlich isotherm model was best fitted to equilibrium data obtained from the experiment. The adsorption kinetics successfully fitted to the pseudo-second-order kinetic model.
Show more [+] Less [-]Developing an Environmental-Friendly Trend of Thermal and Electrical Load Profiles in Ilam Industrial Town Full text
2021
Taheri, Ramezan | Nasrabadi, Touraj | Yousefi, Hossein
Recently, making use of emerging fuels such as municipal waste has been proposed as an alternative for conventional fuels and also as a way for municipal waste disposal. This research, while modeling the thermal and electrical profiles of Ilam Industrial Town, examines the possibility of supplying the required fuel from municipal waste by the year 2041. For this purpose, different combined heat and power (CHP) scenarios were implemented in the LEAP software. According to the results, electricity generation will start gradually from the year of operation of the power plants in 2025 and reach more than 4.3 GWh in 2026. The production process will be incremental and is expected to reach 115.9, 119.1, 111.8, 118.4, 123.1, 118.9, 118.4, 118.4 GWh, respectively under the scenarios of gasifier CHP, CHP turbine incinerator, CHP steam incinerator, landfill CHP, syngas CHP, anaerobic digester CHP, combined gasifier and incinerator CHP, and ultimately improve to 118.9 GWh under the scenario of optimized gasifier and incinerator CHP. The required power plant capacity under the above-mentioned scenarios is expected to be approximately 21 MW by the year 2041and modify to 20.5 MW under the optimization scenario. The incinerator, combined-incinerator-and-gasifier, and optimization scenarios meet the supply and demand conditions of the generated waste, and in other scenarios, either the CHP supply share should be lower than 50% or the additional waste should be supplied from the nearby villages and towns.
Show more [+] Less [-]Removal of Fe3+ Ions from Wastewater by Activated Borassus flabellifer Male Flower Charcoal Full text
2021
Kumar, Goutam | Tonu, Nusrat Tazeen | Dhar, Palash Kumar | Mahiuddin, Md.
Safe and clean water is essential for all living beings. Consumption of polluted water which is contaminated with iron may cause serious health implications. Therefore, removal of Fe3+ from wastewater is prerequisite for further uses. The present study intended to prepare activated charcoal (AC) from Borassus flabellifer male flower (BF) for the removal of Fe3+ ions from wastewater in a cost effective way. BFAC was produced based on carbonization method. Surface morphology and elemental composition were investigated by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Additionally surface charge was determined by iodine number and zero point charge calculation. Batch adsorption studies were monitored using UV-visible spectroscopy. The obtain results showed a maximum adsorption at pH 8 with 0.3g adsorbent dosage at 50ppm initial Fe3+ ion concentration for 130 min contact time. The analysis of adsorption isotherm was in good agreement with both Langmuir and Freundlich adsorption isotherms. The Fe3+ removal method was found to be controlled by 1st order kinetics mechanism. However, the production cost was much cheaper and the removal performance was comparatively better than other commercial charcoals. Hence, BFAC could be used as a commercial charcoal in rural area of Bangladesh for purification of waste water.
Show more [+] Less [-]Assessment of Variations and Correlation of Ozone and its Precursors, Benzene, Nitrogen Dioxide, Carbon monoxide and some Meteorological Variables at two Sites of Significant Spatial Variations in Delhi, Northern India Full text
2021
Sharma, Ram Chhavi | Sharma, Niharika
Ozone(O3), and its precursors, Benzene (C6H6), Nitrogen Dioxide(NO2), Carbon Monoxide (CO) and meteorological parameters Temperature, Relative Humidity and Wind Speed were measured in urban air of two sites of significant spatial variations, Delhi Milk Scheme (DMS), Sadipur and Netaji Subhash Chander Institute of Technology(NSIT) Dwarka, during 2017–2018. Samples collected by Central Pollution Control Board (CPCB) has been analysed. The concentrations of Benzene, Nitrogen dioxide and Carbon monoxide were found to be more at DMS than NSIT site in winter season (11.137±3.258, 5.540±1.441, 55.333±12.741, 44.667±10.066μg/m3, 1.433±0.058, 1.033±0.287mg/m3 respectively) and summer season (3.167±1.222, 2.233±0.929, 50.333±2.082, 31.333±6.658μg/m3, 0.743±0.151, 0.443±0.051mg/m3 respectively) while Ozone was found to be more at NSIT than DMS site (40.333±3.215, 34.433±2.503μg/m3 respectively). The maximum concentrations of Benzene for the DMS and NSIT sites, respectively, were 32.4μg/m3 and 17.7μg/m3 and was observed in the month of November while minimum were 1.0μg/m3 and 0.6μg/m3 and was observed in the month of June. For Ozone, the maximum concentrations for the DMS and NSIT sites, respectively, were 100μg/m3 and 101μg/m3 and was observed in the month of June while minimum were 33.0μg/m3 and 28.0μg/m3 and was observed in the month of February and December respectively. Regression analyses were performed to correlate O3 concentrations with C6H6, NO2 and CO in order to infer their possible sources. The study reveals that there is significant correlation of O3 with C6H6 (r2=0.475) and CO (r2=0.985) in summer at DMS and with C6H6 (r2=0.902) & NO2(r2=0.728) in winter at NSIT. The correlation of O3, C6H6, NO2 and CO with Temperature, Relative Humidity and Wind Speed has also been investigated to understand their influence on these pollutants.
Show more [+] Less [-]