Refine search
Results 351-360 of 5,014
Mitigation of N2O emissions from urine treated acidic soils by liming Full text
2019
Shaaban, Muhammad | Hu, Ronggui | Wu, Yupeng | Younas, Aneela | Xu, Xiangyu | Sun, Zheng | Jiang, Yanbin | Lin, Shan
Nitrous oxide (N2O) is a devastating greenhouse gas mainly released from soils to the atmosphere. Pasture soils, particularly acidic in nature, are large contributors of atmospheric N2O through deposition of urine-N. Devising strategies for reducing N2O emissions in acidic soils are the utmost need of the time. Therefore, the present study was carried out to investigate the possible efficacy of dolomite application to reduce N2O emissions from urine treated acidic soil. Application of urine to soil enlarged the production of NH4+-N, NO3−-N, microbial biomass C (MBC) and dissolved organic C (DOC), resulting in higher N2O emissions as compared to the control (soil only). The highest N2O emission rate (1.35 μg N2O-N kg−1 h−1) and cumulative flux (408 μg N2O-N kg−1) occurred in urine only treated soil. Dolomite addition, especially higher application dose, greatly reduced N2O emissions through improved soil pH. The results suggest that increasing pH of acidic soils is a good applicable approach for reducing N2O emissions from urine-treated soils.
Show more [+] Less [-]Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings Full text
2019
Liu, Jia | Lin, Hai | Dong, Yingbo | Li, Bing
Tributyl phosphate (TBP) is recognised as a global environmental contaminant because of its wide use in floatation reagents, nuclear fuel reprocessing and plasticisers. This contaminant is hardly degraded by hydrolysis in the environment due to its special physicochemical properties. In this study, one TBP-degrading strain was isolated from TBP-contaminated abandoned mine tailings, and 16S rRNA identification revealed that the strain belonged to the genus Sphingomonas. Results validated that the strain could utilise TBP as the sole carbon source, and vitamin was not the essential factor for its growth. Liquid chromatography time-of-flight mass spectrometry analysis identified di-n-butyl phosphate (DnBP) and mono-n-butyl phosphate (MnBP) as the intermediate metabolites for TBP biodegradation. No obvious change in carbon and hydrogen isotope composition was observed in biodegradation processes (cell suspension and crude extract degradation), which indicated that the first irreversible bond cleavage did not involve carbon or hydrogen. Hence, the TBP degradation scheme by Sphingomonas sp. proposed that the first irreversible step of TBP transferred to DnBP would lead to PO bond cleavage. This study combined the identification of products and isotope fractionation in substrates to investigate the transformation mechanism, thereby providing an eco-friendly and cost-effective way for the in situ bioremediation of TBP-contaminated sites by the isolated TBP degradation strain.
Show more [+] Less [-]Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt) Full text
2019
Olías, M. | Cánovas, C.R. | Basallote, M.D. | Macías, F. | Pérez-López, R. | González, R Moreno | Millán-Becerro, R. | Nieto, J.M.
In May 2017, a spill from La Zarza pit lake (SW Spain) resulted in the release of approximately 270,000 m3 of extremely acidic waters to the Odiel River. Around 780 × 103 kg of Fe, 170 × 103 kg of Al, 2.15 × 103 kg of As and high amounts of other trace metals and metalloids were spilled. The purpose of this study is to explain the causes, consequences and impacts of the mine spill on the receiving water bodies. To this end, an extensive sampling along the mine site, river and estuary as well as a hydrological model of the pit lake was performed. Around 53 km of the Odiel River's main course, which was already contaminated by acid mine drainage (AMD), were affected. The mine spill resulted in an incremental impact on the Odiel River water quality. Thus, dissolved concentrations of some elements increased in the river up to 450 times; e.g. 435 mg/L of Fe and 0.41 mg/L of As. Due to low pH values (around 2.5), most metals (e.g., Cu, Zn, Mn, Cd) were transported in the dissolved phase to the estuary, exhibiting a conservative behavior and decreasing their concentration only due to dilution. However, dissolved concentrations of Fe, Cr, Pb, Se, Sb, Ti, V and especially As decreased significantly along the river due to Fe precipitation and sorption/coprecipitation processes. At the upper zone of the estuary, a noticeable increment of metal concentrations (up to 77 times) was also recorded. The water balance illustrates the existence of groundwater inputs (at least 16% of total) to the pit lake, due probably to local infiltration of rainwater at the mining zone. The probable existence of an ancient adit connected to the pit lake indicates that potential releases could occur again if adequate prevention measures are not adopted.
Show more [+] Less [-]Phthalate exposure increases subclinical atherosclerosis in young population Full text
2019
Su, Ta-Chen | Hwang, Jing-Shiang | Torng, Pao-Ling | Wu, Charlene | Lin, Chien-Yu | Sung, Fung-Chang
The link between phthalate exposure and the risk of subclinical atherosclerosis in young population remains unclear. This study investigated the association between phthalate exposure and subclinical atherosclerosis, in terms of carotid intima-media thickness (CIMT), in young population. From a nationwide mass urine screening for renal health, conducted in 1992–2000 among school children 6–18 years of age in Taiwan, we recruited 789 subjects to participate in the cardiovascular health examination in 2006–2008. Among them, 787 received measurements of 7 urinary phthalate metabolites and CIMT. Results showed both mean and maximal values of CIMT at all segments of carotid arteries significantly increased with the urinary mono-2-ethylhexyl phthalate (MEHP), ∑ di-(2-ethylhexyl) phthalate (DEHP), and mono-n-butyl phthalate (MnBP) in a dose-response relationship after adjustment for multiple linear regression models. Multivariate logistic regression analysis showed that higher quartiles of urinary concentrations of MEHP, ∑DEHP, and MnBP were associated with a higher risk of thicker CIMT. Compared to subjects with the lowest quartile (Q1) of urinary MEHP, the adjusted odds ratios (95% confidence interval) for thicker CIMT among subjects with higher urinary MEHP were 2.13 (1.18–3.84) at Q2, 4.02 (2.26–7.15) at Q3 and 7.39 (4.16–13.12) at the highest Q4. In conclusion, urinary phthalate metabolites of MEHP, ∑DEHP, and MnBP are strongly associated with CIMT in adolescents and young adults in Taiwan.
Show more [+] Less [-]Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure Full text
2019
Mouchi, Vincent | Chapron, Leila | Peru, Erwan | Pruski, Audrey M. | Meistertzheim, Anne-Leila | Vétion, Gilles | Galand, Pierre E. | Lartaud, Franck
Plastic pollution has been identified as a major threat for coastal marine life and ecosystems. Here, we test if the feeding behaviour and growth rate of the two most common cold-water coral species, Lophelia pertusa and Madrepora oculata, are affected by micro- or macroplastic exposures. Low-density polyethylene microplastics impair prey capture and growth rates of L. pertusa after five months of exposure. Macroplastic films, mimicking plastic bags trapped on deep-sea reefs, had however a limited impact on L. pertusa growth. This was due to an avoidance behaviour illustrated by the formation of skeletal ‘caps’ that changed the polyp orientation and allowed its access to food supply. On the contrary, M. oculata growth and feeding were not affected by plastic exposure. Such a species-specific response has the potential to induce a severe change in coral community composition and the associated biodiversity in deep-sea environments.
Show more [+] Less [-]Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere Full text
2019
Hu, Haiyan | Zhou, Hao | Zhou, Shixiong | Li, Zhaojun | Wei, Chaojun | Yu, Yong | Hay, Anthony G.
Fomesafen, a long-lived protoporphyrinogen-oxidase inhibitor, specially developed for post-emergence control of broad-leaf weeds, is used widely in soybean fields in northern China (Dayan and Duke, 2010). The impact of fomesafen on microbial communities in rhizosphere soils, however, is unknown. In this study we examined fomesafen degradation as well as its effects in the rhizosphere of soybean plants grown in a greenhouse. Fomesafen had shorter half-life in rhizosphere soil than previously reported for bulk soil from the same location (87 vs 120 days). The enzyme activity of soil extracts and the microbial community composition of 16S rRNA genes (16S) amplified from soil DNA were also investigated. Although not immediately apparent, both the high (37.5 mg kg⁻¹) and low (18.75 mg kg⁻¹) doses of fomesafen significantly decreased urease and invertase activities in the rhizosphere soil from days 30 and 45 respectively until the end of the experiment (90 days). Analysis of 16S amplicons demonstrated that fomesafen had a dose dependent effect, decreasing alpha diversity and altering beta diversity. Significant phylum level decreases were observed in five of the ten phyla that were most abundant in the control. Proteobacteria was the only phylum whose relative abundance increased in the presence of fomesafen, driven by increases in the genera Methylophilacaea, Dyella, and Sphingomonas. The functional implications of changes in 16S abundance as predicted using PICRUSt suggested that fomesafen enriched for enzymes involved in xenobiotic metabolism and detoxification (cytochrome P450s and glutathione metabolism). Our data suggest that, despite being degraded more rapidly in the rhizosphere than in bulk soil, fomesafen had long-lasting functional impacts on the soil microbial community.
Show more [+] Less [-]Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6 Full text
2019
Ge, Jinyi | Huang, Shan | Han, Il | Jaffe, Peter R.
The degradation of trichloroethylene (TCE) and tetrachloroethylene (PCE), in incubations where ammonium was oxidized while iron was being reduced indicates that these compounds can be degraded during the Feammox process by Acidimicrobiaceae sp. A6 (ATCC, PTA-122488). None of these compounds were degraded in incubations to which no ammonium was added, indicating that they were degraded during the oxidation of ammonium. Degradation of TCE and PCE (ranging between 32% and 55%) was observed in incubations with a pure Acidimicrobiaceae sp. A6 culture as well as an Acidimicrobiaceae sp. A6 enrichment culture over a 2-week period. In addition to these batch studies, a column study, with a 5-h hydraulic residence time, was conducted contrasting the degradation of TCE in iron-rich soil columns that were either seeded with a pure or an enrichment culture of Acidimicrobiaceae sp. A6 to achieve ammonium oxidation under iron reduction, and a control column that was initially not seeded and later seeded with Geobacter metallireducens. While there was ∼22% TCE removal in the columns seeded with Acidimicrobiaceae sp. A6, there was no removal in the unseeded column or the column seeded with G. metallireducens which was being operated under iron reducing conditions. Feammox is an anoxic process that requires acidic conditions. Hence, these results indicate that this process might be harnessed where other bioremediation strategies are difficult, since many require neutral or alkaline conditions, and supplying ammonium to an anoxic aquifer is relatively easy, since there are not many processes that will oxidize ammonium in the absence of dissolved oxygen.
Show more [+] Less [-]Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area Full text
2019
Liu, Juan | Yin, Meiling | Zhang, Weilong | Tsang, Daniel C.W. | Wei, Xudong | Zhou, Yuting | Xiao, Tangfu | Wang, Jin | Dong, Xinjiao | Sun, Yubing | Chen, Yongheng | Li, Hui | Hou, Liping
Thallium (Tl) is a well-recognized hazardous heavy metal with very high toxicity. It is usually concentrated in sulfide minerals, such as pyrite (FeS₂), sphalerite (ZnS), chalcopyrite (CuS) and galena (PbS). Here, this study was carried out to investigate the indigenous microbial communities via 16S rRNA gene sequence analysis in typical surface sediments with various levels of Tl pollution (1.8–16.1 mg/kg) due to acid mine drainage from an active Tl-containing pyrite mining site in South China. It was found with more than 50 phyla from the domain Bacteria and 1 phyla from the domain Archaea. Sequences assigned to the genera Ferroplasma, Leptospirillum, Ferrovum, Metallibacterium, Acidithiobacillus, and Sulfuriferula manifested high relative abundances in all sequencing libraries from the relatively high Tl contamination. Canonical correspondence analysis further uncovered that the overall microbial community in this area was dominantly structured by the geochemical fractionation of Tl and geochemical parameters such as pH and Eh. Spearman's rank correlation analysis indicated a strong positive correlation between acidophilic Fe-metabolizing species and Tlₜₒₜₐₗ, Tlₒₓᵢ, and Tlᵣₑₛ. The findings clarify potential roles of such phylotypes in the biogeochemical cycling of Tl, which may facilitate the development of in-situ bioremediation technology for Tl-contaminated sediments.
Show more [+] Less [-]Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review Full text
2019
Luo, Xiaosan | Bing, Haijian | Luo, Zhuanxi | Wang, Yujun | Jin, Ling
Atmospheric particulate matter (PM) pollution and soil trace metal (TM) contamination are binary environmental issues harming ecosystems and human health, especially in the developing China with rapid urbanization and industrialization. Since PMs contain TMs, the air-soil nexus should be investigated synthetically. Although the PMs and airborne TMs are mainly emitted from urban or industrial areas, they can reach the rural and remote mountain areas owing to the ability of long-range transport. After dry or wet deposition, they will participate in the terrestrial biogeochemical cycles of TMs in various soil-plant systems, including urban soil-greening trees, agricultural soil-food crops, and mountain soil-natural forest systems. Besides the well-known root uptake, the pathway of leaf deposition and foliar absorption contribute significantly to the plant TM accumulation. Moreover, the aerosols can also exert climatic effects by absorption and scattering of solar radiation and by the cloud condensation nuclei activity, thereby indirectly impact plant growth and probably crop TM accumulation through photosynthesis, and then threat health. In particular, this systematic review summarizes the interactions of PMs-TMs in soil-plant systems including the deposition, transfer, accumulation, toxicity, and mechanisms among them. Finally, current knowledge gaps and prospective are proposed for future research agendas. These analyses would be conducive to improving urban air quality and managing the agricultural and ecological risks of airborne metals.
Show more [+] Less [-]The role of turbulence in internal phosphorus release: Turbulence intensity matters Full text
2019
Li, Hong | Yang, Guofeng | Ma, Jianrong | Wei, Yanyan | Kang, Li | He, Yixin | He, Qiang
Hydrodynamic fluctuations can trigger sediment suspension concomitantly with internal phosphorus release, while the interactive effect of turbulence mixing and sediment suspension on the regulation of phosphorus dynamics is in need of deep understanding. This study addressed the changes in total phosphorus (TP), phosphate (PO₄³⁻-P) and suspended sediment (SS) in the overlying water, and measured the profile of dissolved oxygen (DO), Fe(II) and soluble reactive phosphorus (SRP) across the sediment-water interface in the simulated environmental turbulence scenario, For a turbulence intensity (ε) of 3.6 × 10⁻³ m²/s³, the SRP flux increased hence PO₄³⁻-P showed a 36.36% increase relative to its initial level. Although ε of 1.3 × 10⁻² m²/s³ benefited the delivery of oxygen from the bulk aqueous phase to the upper sediment which can trigger the formation of Fe oxides and hydroxides, the turbulence-induced phosphorus diffusion from the sediment exceeded its inactivation and resulted in a large SRP flux. However, a protion of the released PO₄³⁻-P can be immobilized through SS adsorption and biotic (likely cyanobacteria) assimilation. Higher turbulence intensities (ε of 3.3 × 10⁻² and 7.4 × 10⁻² m²/s³) led to an approximately 40-fold increase in TP concentration and a significant increase in sediment suspension, which contributed to the immobilization of a majority of the phosphate through adsorption; thus, the PO₄³⁻-P concentrations in the overlying water displayed 47.75% and 41.67% decline, respectively. This study also confirmed the sequential phosphorus buffer mechanisms associated with increasing turbulence intensities. With an ε of 3.6 × 10⁻³ m²/s³, bounding to Fe ion had a significant impact on phosphorus inactivation but with an ε of 7.4 × 10⁻² m²/s³, the main immobilization mechanism is switched to phosphorus adsorption from the large quantity of suspended sediment.
Show more [+] Less [-]